Sentence Generation and Classification with Variational Autoencoder and BERT

Geeling Chau, Anshuman Dewangan, Jin-Long Huang, Keshav Rungta, Margot Wagner

Introduction

- **Natural-language generation**: transformation of structured data into natural language, in this case using AI techniques
- Current SOTA: GPT-3 by OpenAl -- 175 billion parameters (May 2020)
- **Problem**: text generation can tend to be contradictory
- **Goal**: generate text responses with different levels of contradictoriness

The Dataset

"Contradictory, My Dear Watson" by Kaggle:

- Over 12k unique pairs

Stanford Natural Language Inference (SNLI) :

- Over 570k unique pairs
- Given a sentence pair (a premise and a hypothesis) there are 3 ways they could be related: "This church choir sings to the masses as they sing joyous songs from the book at a church."
 - 1. One sentence entails the other (entailment)
 - a. The church is filled with song.
 - 2. The sentences are neutral but related (neutral)
 - a. The church has cracks in the ceiling.
 - 3. One sentence contradicts the other (contradiction)
 - a. A choir singing at a baseball game.

Data Processing

Kaggle MDW:

- Kaggle dataset contains sentences from many languages
- Since only 56% of them are in English, we translate all of them to English using the pytransgoogle library provided by Google Translate API

SNLI:

- Used HuggingFace Datasets (PDatasets) to process the original dataset to work with our original dataloader one for MDW.

Figure 1: Language distribution in MDW dataset.

The Goal

- 1. Create 1 variational autoencoder that generates a hypothesis given a premise with no regard for class label
 - a. Metric: BLEU scores compared to dataset
- 2. Create 3 variational autoencoders, one for each class, to generate a hypothesis given a premise of that label
 - a. Metric: BLEU scores compared to dataset and accuracy score when passed through BERT classifier
- 3. Create a conditional variational autoencoder that generates a hypothesis given a premise and class label
 - a. Metric: BLEU scores compared to dataset and accuracy score when passed through BERT classifier

Hypothesis Generation -- Variational Autoencoder (VAE)

- Variational autoencoder (VAE): generative version of basic autoencoder
- LSTM encoder and decoder

- Encoder
 - Input: premise sentence
 - Output: embedding in Gaussian latent space
- Decoder
 - Input: embedding
 - Output: hypothesis sentence
- Reparameterization trick to enable backprop

$$||x - x'||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

Hypothesis Classification -- BERT

- We used pretrained BERT provided by 🤗

- Bidirectional representation
- Attention mechanism

- Input: concatenated sentence pairs
- Output: sentence relationship class

~ Results ~ Variational AutoEncoder (VAE) Sentence Generator

A man is holding a child.

- The man is a professional musician.
- The man is sitting on a couch.

VAE HP Tuning + Data Augmentation

(a) Training Loss

(b) Validation Loss

Experiment	Test Loss	BLEU-1	BLEU-4
MDW English Only	2.754	34.73	5.90
MDW w/ Translations	2.47	21.44	2.91
SNLI	0.957	26.0	3.74

How close can we get our generated sentences to be?

1. Class Agnostic

Test Loss	BLEU-1	BLEU-4	
0.957	26.0	3.74	

A man in a black hat opens his mouth -> a man is looking at a camera

A young infant cries while having his or her pajamas button -> <u>a man is standing outside</u>

How close can we get our generated sentences to be?

1. Class Agnostic

Test Loss	BLEU-1	BLEU-4	
0.957	26.0	3.74	

A man and a child are laughing at each other. Predicted Entailment: A man is holding a child

2. Class Specific

a.	0: entail 🏻 🗍	0.846	25.8	3.74
b.	1: neutral	1.164	25.9	3.74
C	2. contra	0.967	24.6	3.48

A man talking into a microphone with a woman standing next to him.

Predicted Neutral: The man is a professional musician

A man wearing a white shirt and a blue jeans reading a newspaper while standing. Predicted Contradiction: The man is sitting on the couch.

How close can we get our generated sentences to be?

1. Class Agnostic

Test Loss	BLEU-1	BLEU-4	
0.957	26.0	3.74	

2. Class Specific

a. 0: entail 0.846 25.	8 3.74
b. 1: neutral 1.164 25.	9 3.74
c 2: contra 0.967 24.	6 3.48

A man on a bicycle rides past a park, with a group of people in the background.

Predicted Contradiction: The man is sitting on the couch.

3. Class Conditional

~ Results ~ BERT Classification of Premise + Hypothesis Pairs

0: Entailment

A man and a child are laughing at each other + Two people are laughing

BERT HP Tuning + Baseline Accuracy

Learning Rate: 5e-5

Baseline Accuracy:

Class Label	Test Loss	Acc
All classes	0.291	0.891
Class 0 examples only	0.240	0.913
Class 1 examples only	0.320	0.844
Class 2 examples only	0.139	0.919

(a) Train Loss

(b) Validation Loss

5e-3 5e-

5e-6 1e-5 3e-5 5e-5

How much of the logic did our generation models learn to produce?

Varying Temperature:

Temperature	VAE Test Loss	VAE BLEU-1	VAE BLEU-4	BERT Los	BERT Acc
0	0.939	25.6	3.70	3.95	0.357
0.25	0.939	23.7	3.50	3.513	0.387
0.5	0.939	21.8	3.40	3.313	0.346
0.75	0.939	18.5	3.06	3.567	0.346
1	0.939	15.5	2.80	3.77	0.316

Table 5: BERT classification performance on sentences generated by conditional VAE using different temperatures and SNLI dataset.

Varying Class Label:

Class Label	VAE Test Loss	VAE BLEU-1	VAE BLEU-4	BERT Loss	BERT Acc
0	0.864	25.2	3.78	3.93	0.151
1	1.11	24.4	3.57	3.68	0.218
2	0.870	25.1	3.87	0.988	0.781
1.25	15 (S		St		97 - A

Table 6: BERT classification performance on sentences generated by class-specific VAE using temperature = 0.25 and SNLI dataset.

Architecture Changes?

- What we tried:

- Use *encoder output* as *decoder hidden state* for initial time step only
- Use encoder output concatenated with hypothesis as decoder input
- Use *encoder output* as *decoder hidden and cell state* at every time step
- Use encoder output as decoder hidden state only at every time step
- Use encoder output concatenated with decoder hidden state as decoder hidden state at every time step
- Future work:
 - Can generate synonyms for various words in sentences
 - Use concatenated (premise, hypothesis) pair as encoder input
 - Use BERT instead of LSTM for encoder/decoder

Architecture Changes

(a) Training Loss

(b) Validation Loss

Figure 5: Loss for baseline VAE model with 5e-4 learning rate, 512 hidden size, and 300 embedding size while varying architecture. Legend: Bottom Curve = Version 1, using hypothesis only as input into decoder; Top Curve = Version 2, concatenating embedded output of encoder with the hypothesis as input into decoder.

premise	a man in a black hat opens his mouth.
actual hypothesis (class 1)	The governor prepared to deliver the speech that would deliver the votes.
good neutral	a man is looking at a camera.
premise	a young infant cries while having his or her pajamas button.
actual hypothesis (class 2)	A young baby smiles.
bad contradiction	a man is standing outside.

Table 7: One "good" and one "bad" generated hypotheses from baseline (class-agnostic) VAE using temperature = 0.25.

premise	a man and a child are laughing at each other.	
actual hypothesis (class 0)	Two people are laughing.	
good entailment	a man is holding a child.	
premise	a woman holds a newspaper that says "real change"	
actual hypothesis (class 0)	a woman holding a newspaper that says "real change"	
bad entailment	a man is wearing a shirt.	

Table 8: One "good" and one "bad" generated hypotheses from class 0-specific VAE using temperature = 0.25.

premise	a man talking into a microphone with a woman standing next to him.
actual hypothesis (class 1)	The woman is sitting in the chair next to the podium.
good neutral	the man is a professional musician.
premise	a woman in black reviews a message as she walks to work.
actual hypothesis (class 1) The woman in black is being fired via text messag	
bad neutral	a man is trying to fix a broken component.

Table 9: One "good" and one "bad" generated hypotheses from class 1-specific VAE using temperature = 0.25.

premise	a man wearing a white shirt and a blue jeans reading a newspaper while standing
actual hypothesis (class 2)	A man is sitting down reading a newspaper.
good contradiction	the man is sitting on the couch.
premise	the small dog is running across the lawn.
actual hypothesis (class 2)	A cat is running up a tree.
bad contradiction	the man is wearing a red shirt.

Table 10: One "good" and one "bad" generated hypotheses from class 2-specific VAE using temperature = 0.25.

premise	a man on a bicycle rides past a park, with a group of people in the background.
actual hypothesis (class 2)	a guy rides his bike in the middle of a park.
good contradiction	a man is sitting on a bench.
premise	a small dog runs to catch a ball.
actual hypothesis (class 0)	A little dog chases a ball.
bad entailment	a woman is holding a child.

Table 11: One "good" and one "bad" generated hypotheses from conditional VAE using temperature = 0.25.