Automated Neuroimaging Pipeline for Structural Feature Selection using Deep Learning Segmentation Applied to Adolescent Mental Disorders

Margot Wagner¹, Brandon Liu¹, Alessandra Camassa², Gert Cauwenvberghs¹, Terry Sejnowski^{1,2}

¹University of California San Diego, ²The Salk Institute for Biological Studies

Structural MRI SynthSeg+ Segmented MRI Diagnosis Transformation Structural Features A Achenbach S System of E Empirically B Based A Assessment QC removal

Introduction

- MRI to identify structural differences as potential biomarkers
- **Neuroimaging processing** and analysis is **non-standardized** leading to unreliable scientific results
- **ASEBA Syndromes** and **DSM-5** are two alternatives for adolescent mental disorders, both without biological basis
- If we have a standardized analysis method, are we able to uncover structural trends in these adolescent disorders using Big Data?

Methods

Dataset: **ABCD Baseline sMRI**¹ (9-10) Diagnostic Labels:

ASEBA 814 control subjects

294 +/- 35 disorder subjects

DSM 1156 control subjects

247 +/- 64 disorder subjects

QC removal: avg 20% +/- 1.5% loss

Segmentation using hierarchical U-Nets²

Results

- SynthSeg+ showed higher volume estimations compared to FreeSurfer where underestimation is a FreeSurfer limitation³
- SynthSeg+ was more robust to different scanner types (Siemens v GE v Philips)[D]
- Most disorders showed volumetric differences compared to the control population, except for Withdrawn/ Depressed (ASEBA) [E]
- ASEBA disorders generally saw more structural differences between populations
- SuggestS disorder separability [B/C]

[2] Billot, Benjamin, et al. "Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets." Proceedings of the National Academy of Sciences 120.9 (2023): e2216399120.

UCSanDiego Salk