Classifying Evoked Potentials from Spinal Cord Microelectrode Array Data

Jeremy Ford, Samantha Russman, Margot Wagner COGS 260 Spring 2020

Brain-spine interfaces for treatment of spinal cord injury

A wireless **brain-spine interface (BSI)** could restore movement and sensation in patients with spinal cord injury.

Spinal cord electrical stimulation and recording **via microelectrode arrays** can relay information between the brain and the body.

Two pathways must be restored:

1. Sensory information

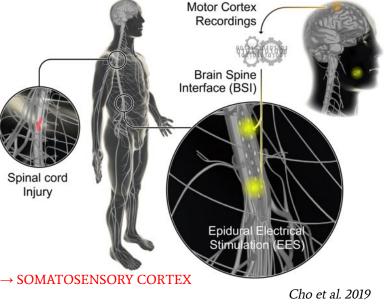
SENSORY NEURONS (LIMBS) → SPINAL CORD SENSORY EVOKED POTENTIALS→ SOMATOSENSORY CORTEX

2. Motor information

MOTOR CORTEX \rightarrow SPINAL CORD MOTOR EVOKED POTENTIALS \rightarrow MOTOR NEURONS (LIMBS)

Transmitting sensory information to/from the spinal cord requires classification of sensory evoked potentials.

Neuromodulation of circuits below the injury

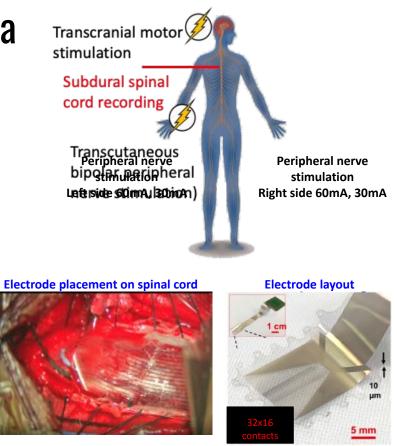


Experimental setup & collected data

We performed peripheral sensory nerve stimulation in a patient undergoing a spinal cord tumor resection and recorded from the spinal cord with a microelectrode array with 100s of contacts.

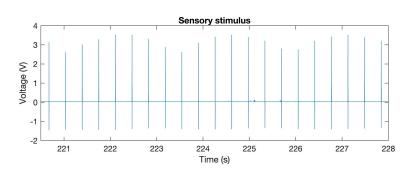
Stimulation varied based on side of the body and stimulus level and was administered with neurophysiology monitoring equipment.

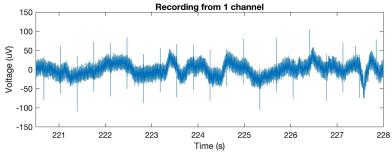
Can a supervised learning model classify different types of sensory evoked potentials from recordings of electrical activity in the spinal cord?



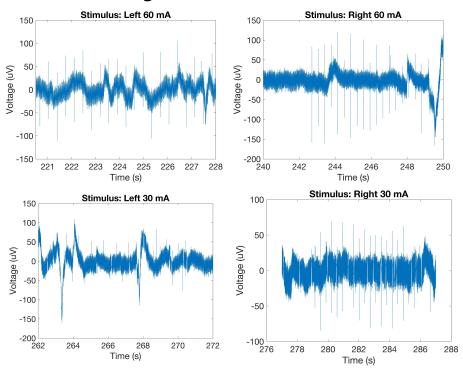
Data preprocessing

1. Alignment





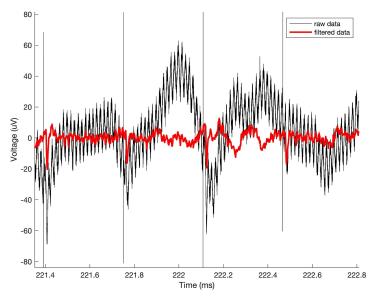
2. Windowing



Data preprocessing

3. Filtering

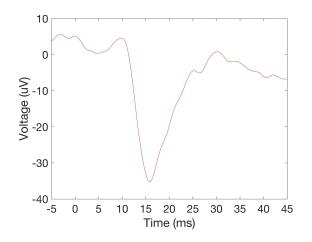
- Notch filters for 60 Hz noise and harmonics
- Bandpass filter [3 300 Hz] → captures LFP behavior



4. Initial bad channel selection

- Based on impedance measurements for all channels.
- Impedances below 150 kOhms
- Resulted in 353 "good channels"

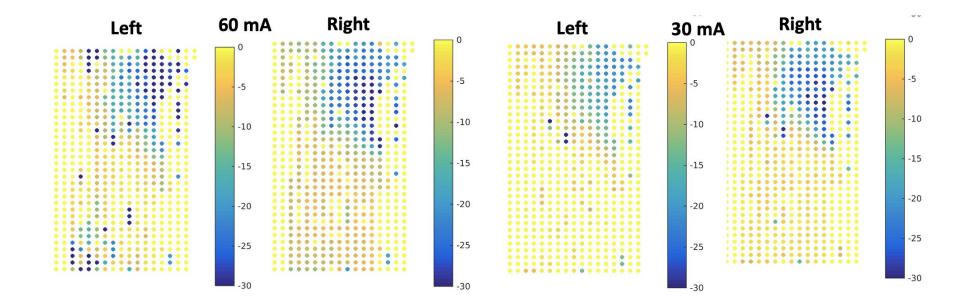
5. Segmentation into individual trials



Assessing recordings before classification



Assessing recordings before classification



Hypothesis & project goal

Goal: Detect and classify single evoked potentials in a short time-window of data recorded from a 300+ channel microelectrode array placed subdurally on the spinal cord surface.

- The five classes of interest are:
 - sensory evoked potentials at 60 mA stimulation (left and right)
 - sensory evoked potentials at 30 mA stimulation (left and right)
 - no evoked potentials (baseline)
- Input dataset is 50 ms long and sampled at 20 kHz
- Initial hypothesis: extracting the top principal component (PC) from the input data will be sufficient to achieve a 50% classification accuracy rate via a multiclass linear discriminant analysis.

Analysis - Outline

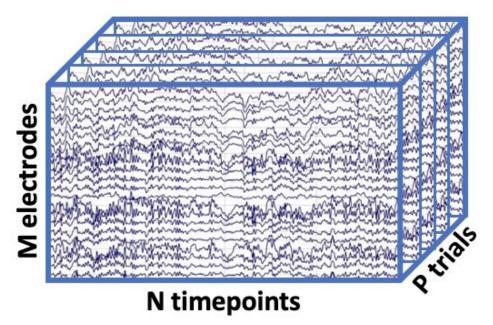
- 1. Preprocessing
- 2. Dimensionality Reduction and Feature Extraction
- 3. Classification

Analysis - Outline

- 1. Preprocessing
- 2. Dimensionality Reduction and Feature Extraction
- 3. Classification

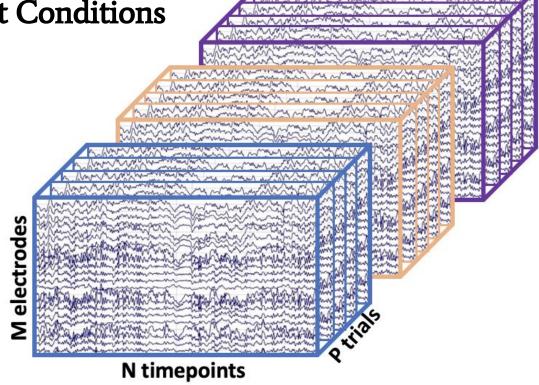
Analysis - Data Matrix

1 Condition



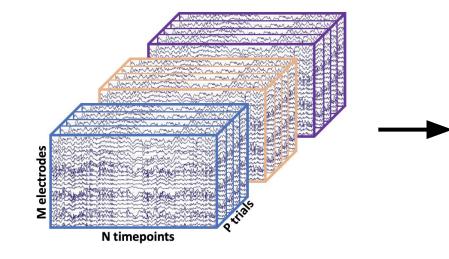
Analysis - Data Matrix

D Different Conditions



Analysis - Data Matrix Reshaping

Dimensionality reduction requires a 2D matrix



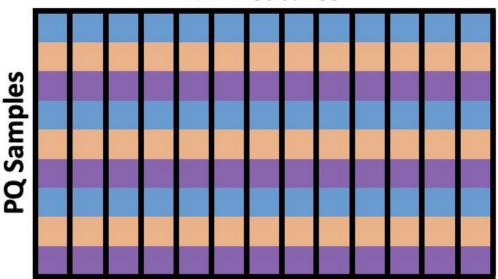
M electrodes x N timepoints

Analysis - Data Matrix Reshaping Samples x Features

- Mean centered data:

zero mean across features

MN Features



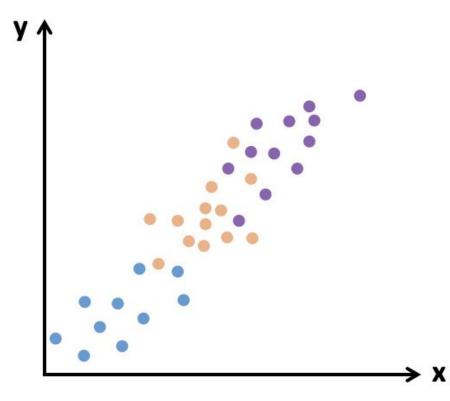
Analysis - Outline

- 1. Preprocessing
- 2. Dimensionality Reduction and Feature Extraction
- 3. Classification

- **PCA:** Dimensionality reduction technique decomposing the data into variance directions and magnitudes and keeping the directions of highest variance.
- Keeps the most "informative" dimensions
- Unsupervised no labels

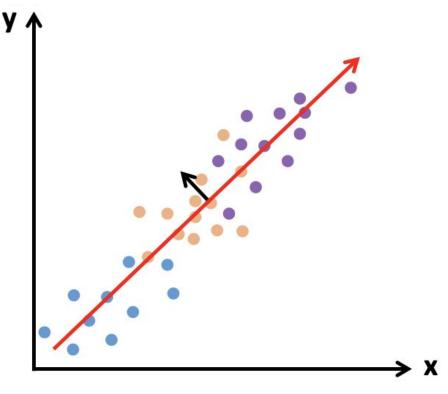
Dimensionality reduction

- Create new uncorrelated variables (principal components) that maximize variance
 - These variables are linear functions of the original variables



Dimensionality reduction

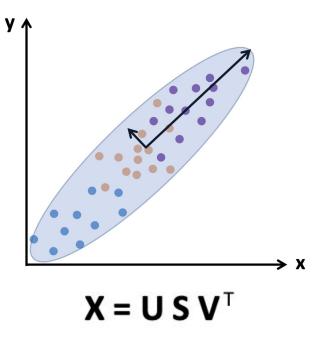
- Create new uncorrelated variables (principal components) that maximize variance
 - These variables are linear functions of the original variables



y ∧

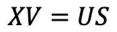
2. Reduce the dimensionality of the dataset by keeping the components with the most variance, or spread.

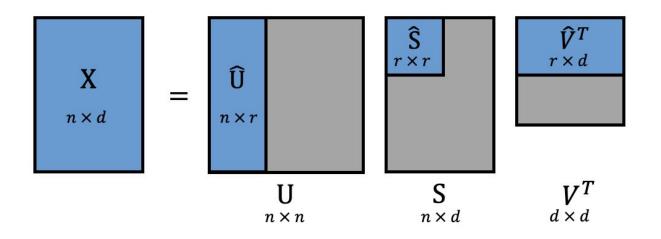
Analysis - Singular Value Decomposition (SVD)



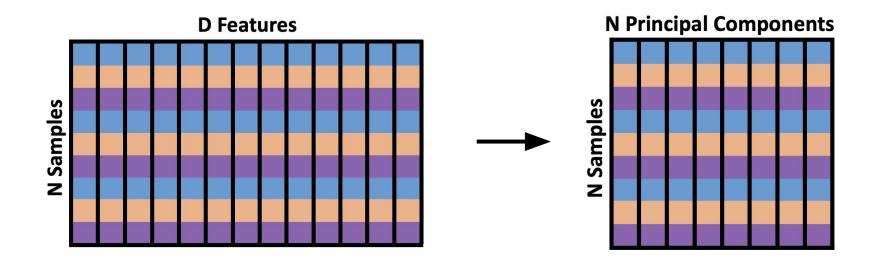
Analysis - Singular Value Decomposition (SVD)

- For an $n \times d$ data matrix **X**:
 - **U:** Eigenvectors of XX^{T}
 - **V**: Eigenvectors of $X^T X$ Principal directions or axes
 - **S**: Singular values Eigenvalues of XX^T diagonal matrix
- Can limit the resulting size of the matrix $r \leq \min(n, d)$
- **Transformed data** (principal components): XV = US

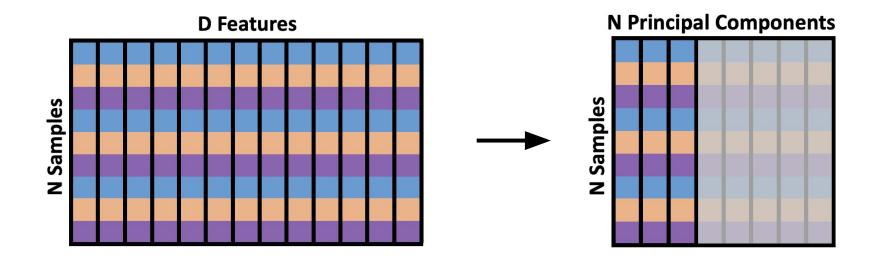


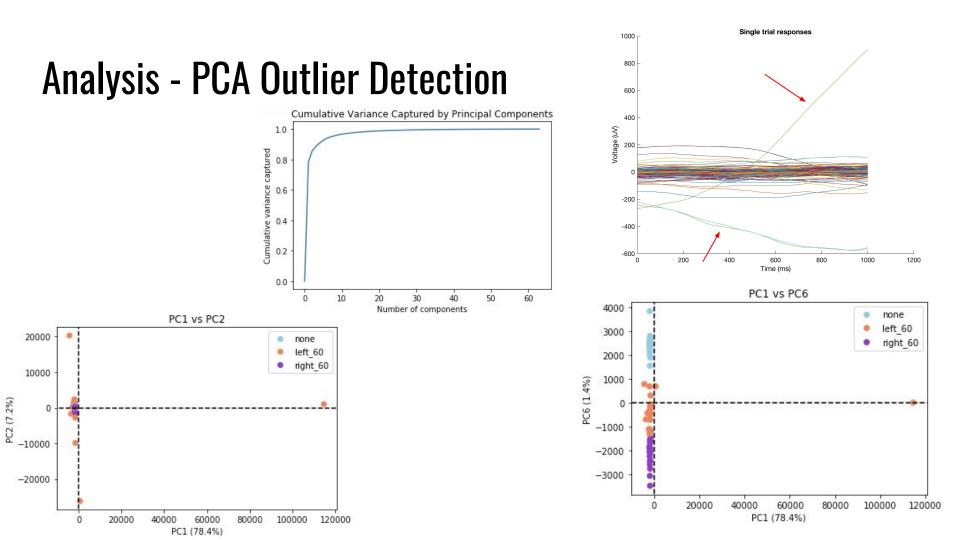


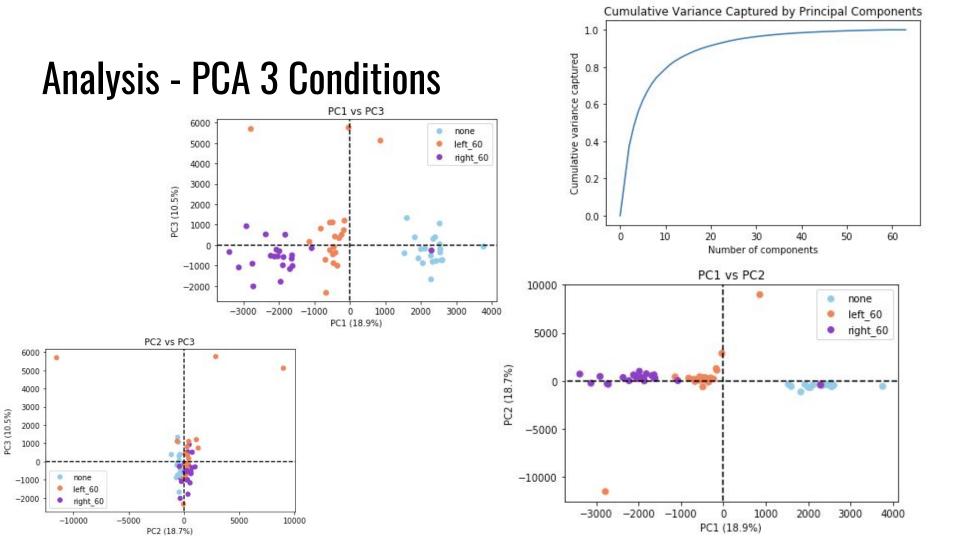
- Transform data onto principal axes
- Select a subset of principal components to reduce dimensionality while being able to explain data

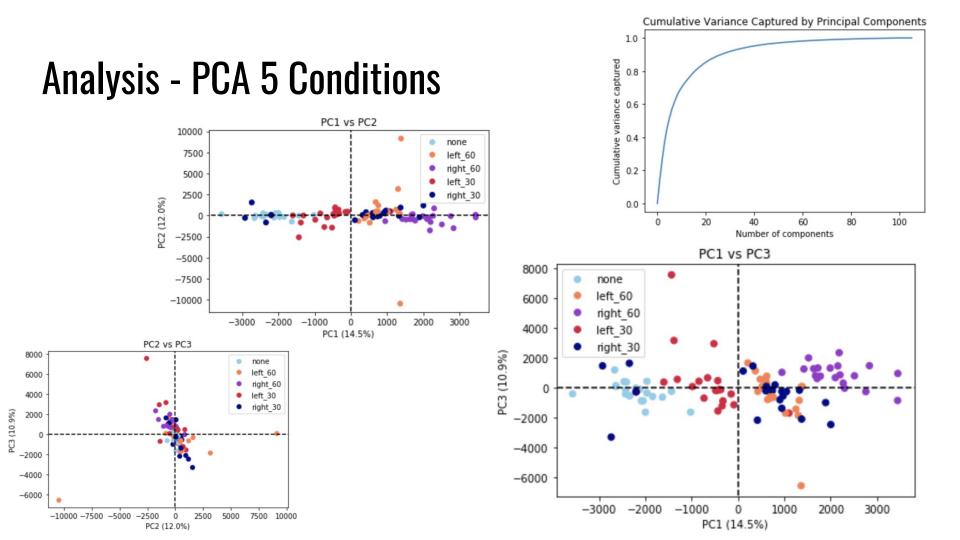


- Transform data onto principal axes
- Select a subset of principal components to reduce dimensionality while being able to explain data









Analysis - Outline

- 1. Preprocessing
- 2. Dimensionality Reduction and Feature Extraction
- 3. Classification

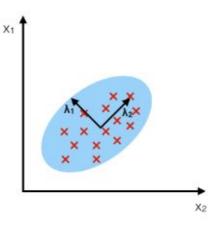
Analysis - Linear Discriminant Analysis (LDA)

- Dimensionality reduction technique
- Determine axes that maximize the separation between classes
- Supervised classes are labeled
- Can be combined with PCA
- Useful for classification

Analysis - LDA

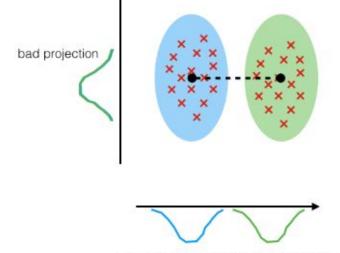
PCA:

component axes that maximize the variance



LDA:

maximizing the component axes for class-separation



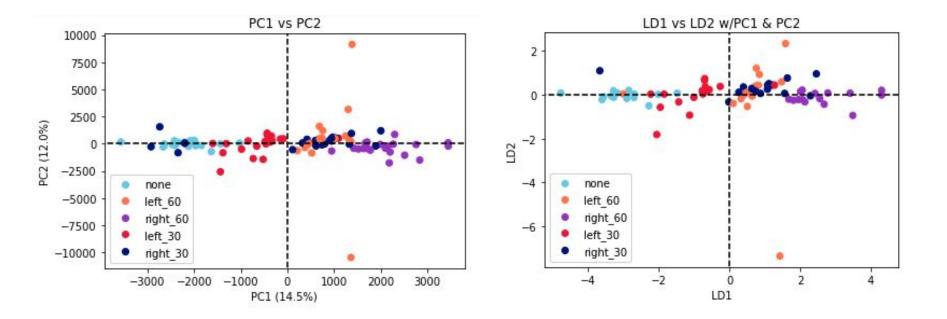
good projection: separates classes well

http://sebastianraschka.com/Articles/2014_python_lda.html

Analysis - LDA Implementation

- 1. Compute the mean vectors for each class
- 2. Compute the scatter matrices
 - 2.1. S_w within-class scatter
 - 2.2. S_b between-class scatter
- 3. Solve eigenvalue problem for $A = S_w^{-1}S_b$
 - 3.1. $Av = \lambda v$
- 4. Select linear discriminants
 - 4.1. Sort eigenvectors by decreasing eigenvalues
 - 4.2. Keep top-n eigenvectors
- 5. Transform input to the LD space

Analysis - PCA vs LDA



Analysis - Naive Bayes Classifier

- Bayes Theorem
- Estimate probabilities from LDA

$$P(\mathcal{C}_j|x) = rac{P(x|\mathcal{C}_j)P(\mathcal{C}_j)}{P(x)}$$

 Take class with highest conditional probability

Decide
$$\begin{cases} \mathcal{C}_1 & \text{if } P(\mathcal{C}_1|x) > P(\mathcal{C}_2|x) \\ \mathcal{C}_2 & otherwise \end{cases}$$

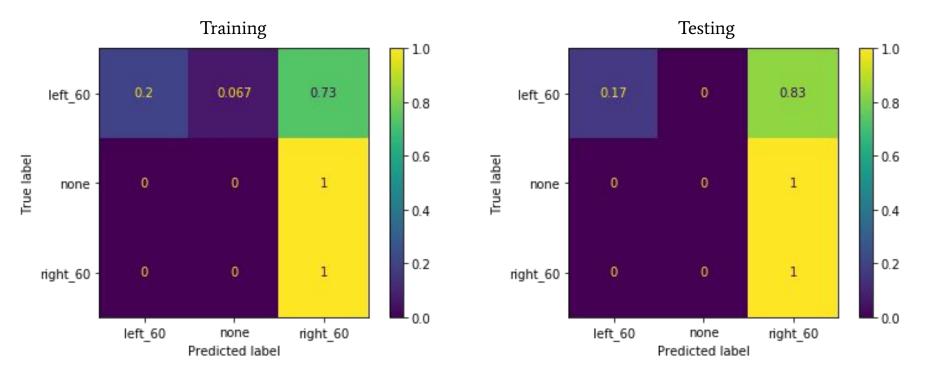
Analysis - K-Fold Cross-Validation

- Split data into k sets
- Iterate through test/train k times, swapping which set is used for testing each iteration
- Helps to reduce bias in the estimate of the model's performance

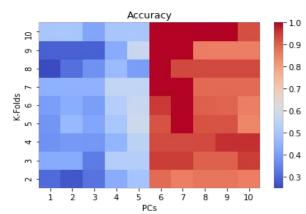
Analysis - Classifier Metrics

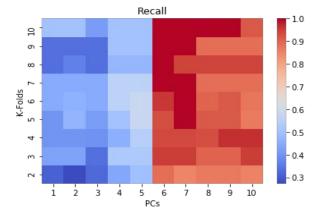
$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$precision = \frac{TP}{TP + FP}$$
$$recall = \frac{TP}{TP + FN}$$
$$F1 \ score = \frac{2 * precision * recall}{precision + recall}$$

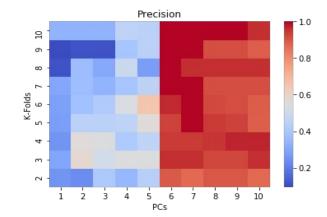
Results - 353 Channels, 3 Classes

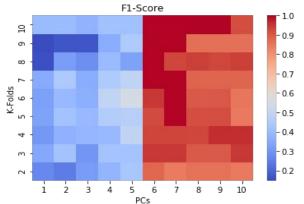


Results - 353 Channels, 3 Classes

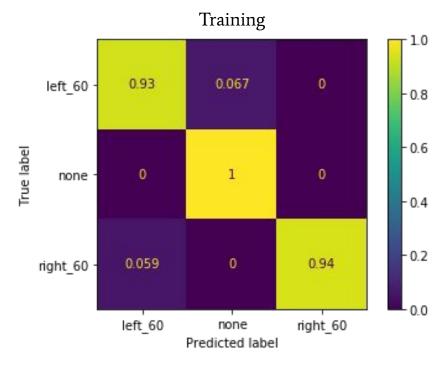


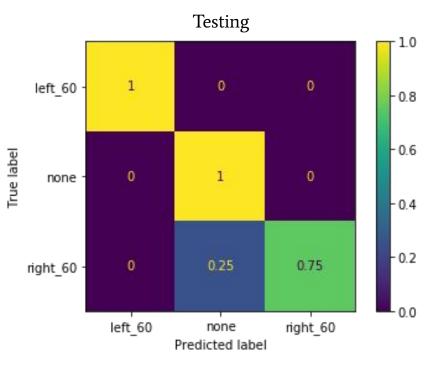






Results - 310 Channels, 3 Classes





Results - 310 Channels, 3 Classes

9

თ

œ

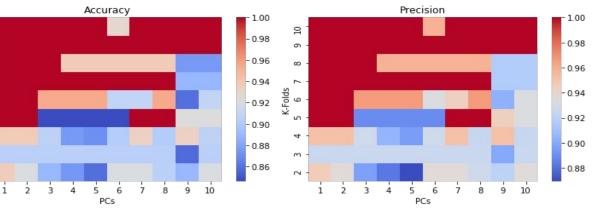
ŝ

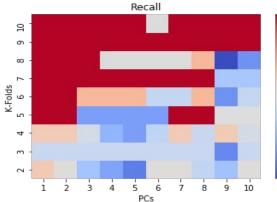
4

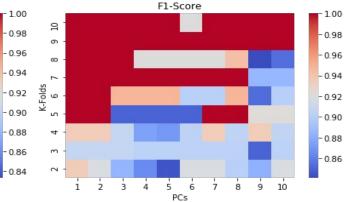
m

 \sim

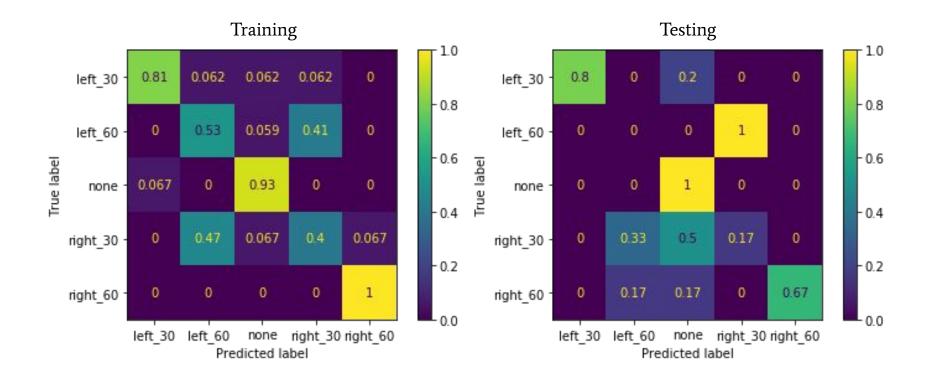
K-Folds 6







Results - 310 Channels, 5 Classes



Results - 310 Channels, 5 Classes

3

б

œ

7

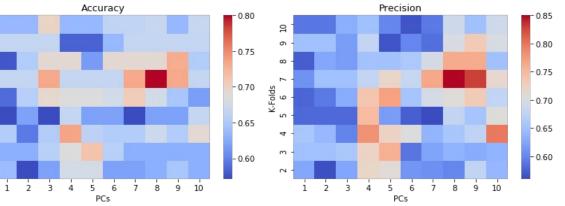
ŝ

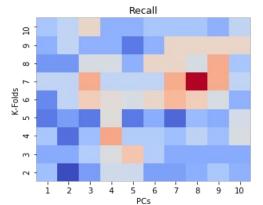
4

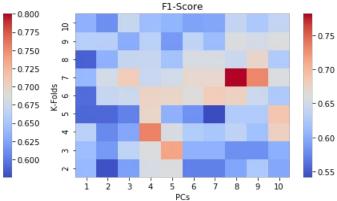
m

 \sim

K-Folds 6







Conclusion

We can detect and classify single evoked potentials in a short time-window of data recorded from a 300+ channel microelectrode array placed subdurally on the spinal cord surface.

Initial hypothesis: extracting the top principal component (PC) from the input data will be sufficient to achieve a 50% classification accuracy rate via a multiclass linear discriminant analysis.

- **X** False for originally selected data with bad channels only removed based on impedance
 - PC #6 necessary to classify data with accuracy > 50%
 - True for cleaned data where additional bad channels are removed
 - PC #1 classified data with accuracy ~ 60%

Supplementary Slides

Analysis - Naive Bayes Classifier

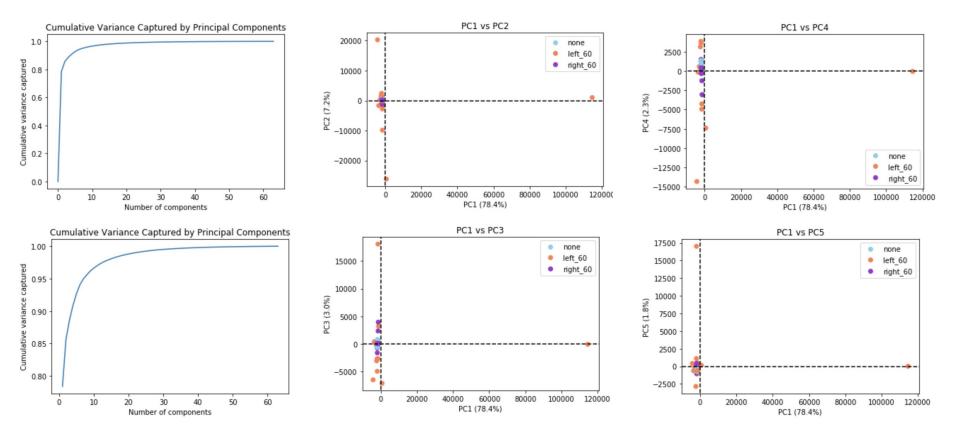
- Bayes Theorem
- Calculate P(x|C_j) from
 LDA

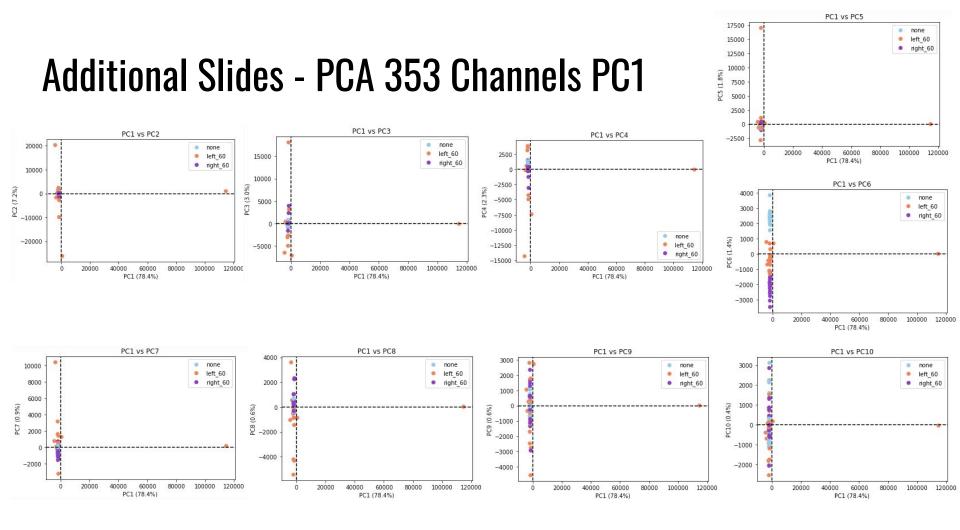
$$P(\mathcal{C}_j|x) = rac{P(x|\mathcal{C}_j)P(\mathcal{C}_j)}{P(x)}$$

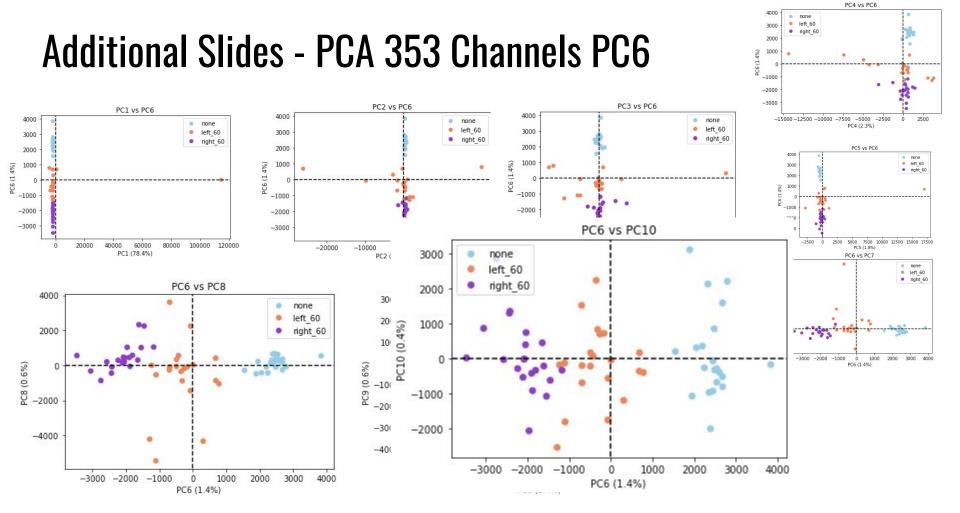
$$P(x) = \sum_{j=1}^{2} P(x|\mathcal{C}_j) P(\mathcal{C}_j)$$

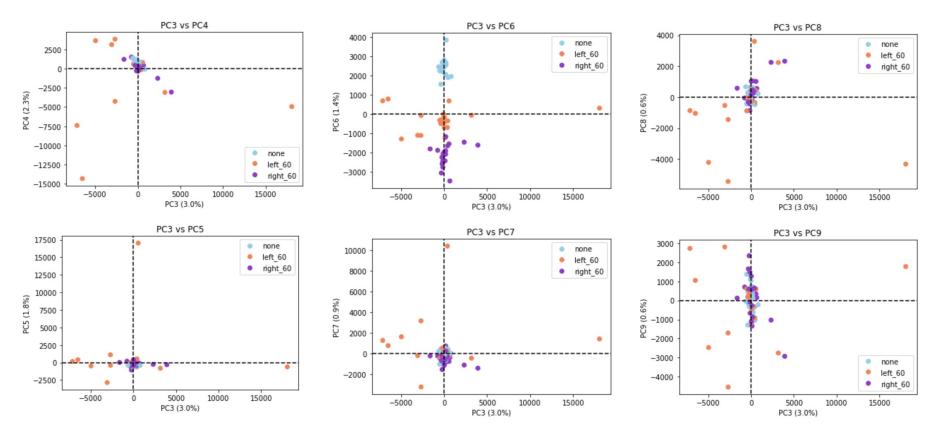
- Assume $P(C_j)$ from LDA
- Take class with highest conditional probability

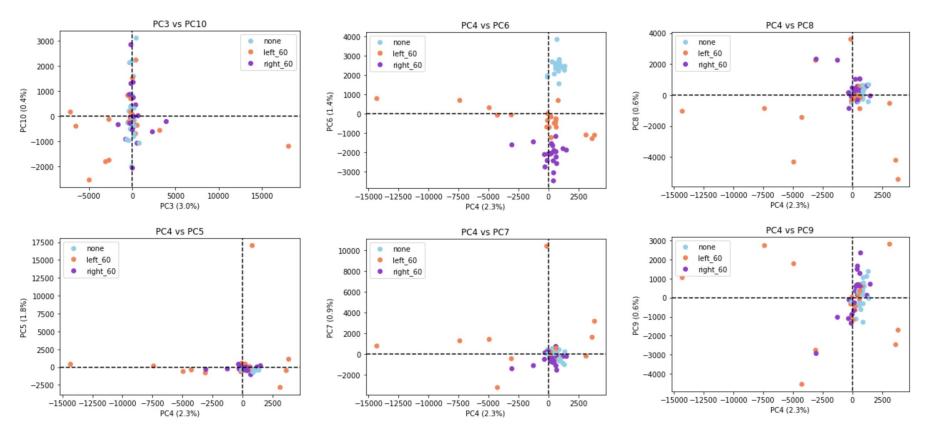
Decide
$$\begin{cases} \mathcal{C}_1 & \text{if } P(\mathcal{C}_1|x) > P(\mathcal{C}_2|x) \\ \mathcal{C}_2 & otherwise \end{cases}$$

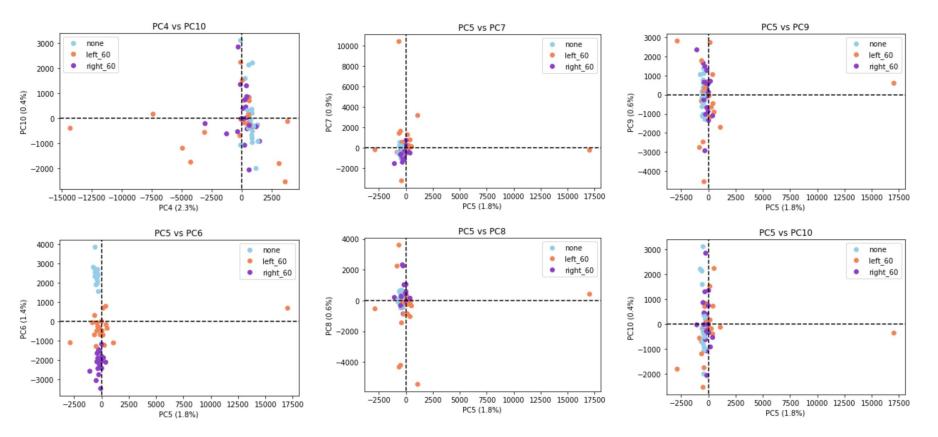


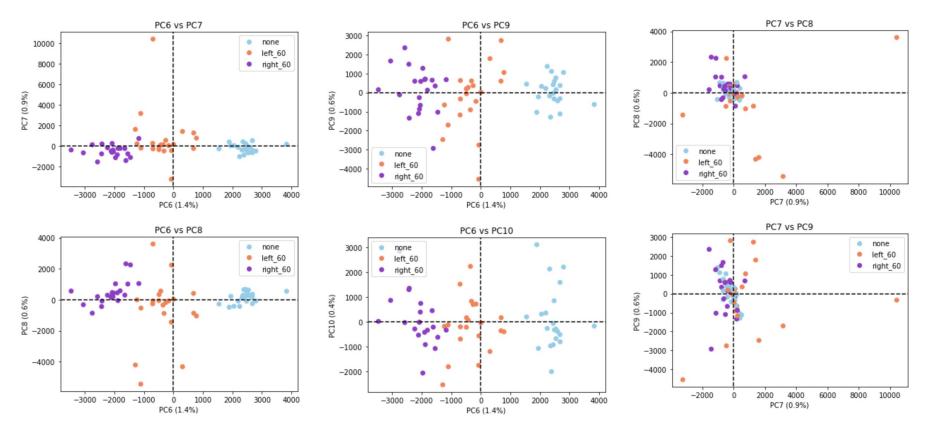


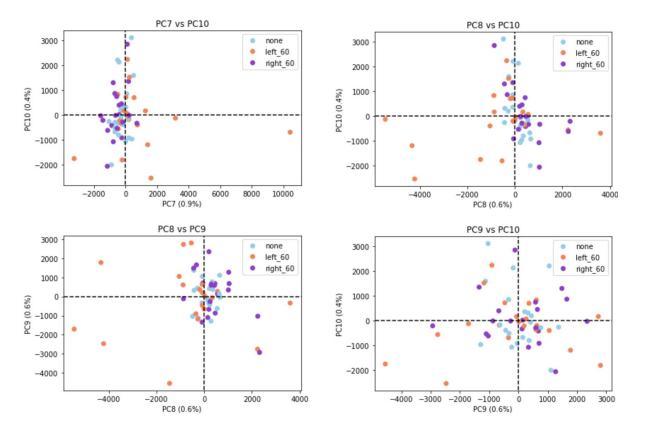




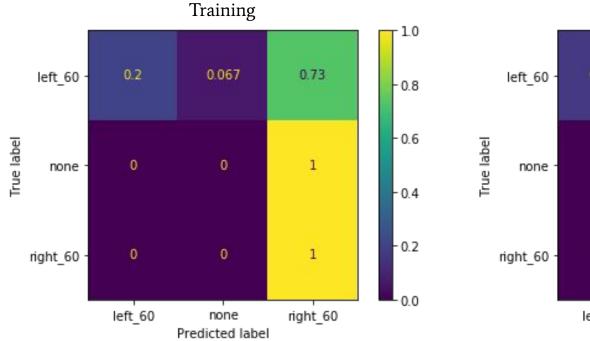


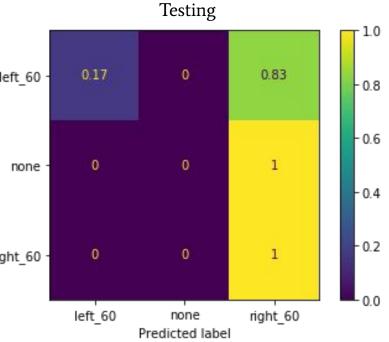




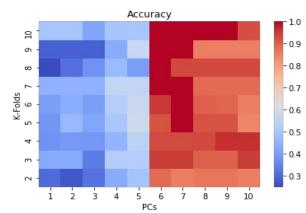


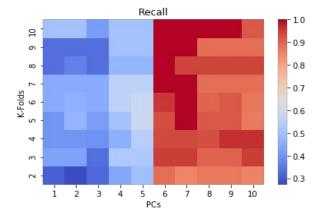
Confusion matrix - 353 channels

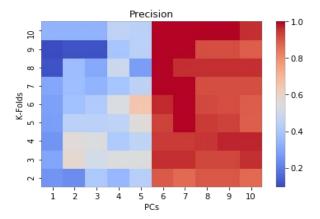


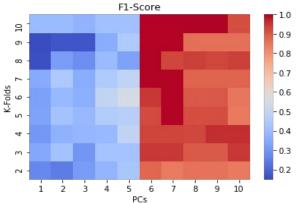


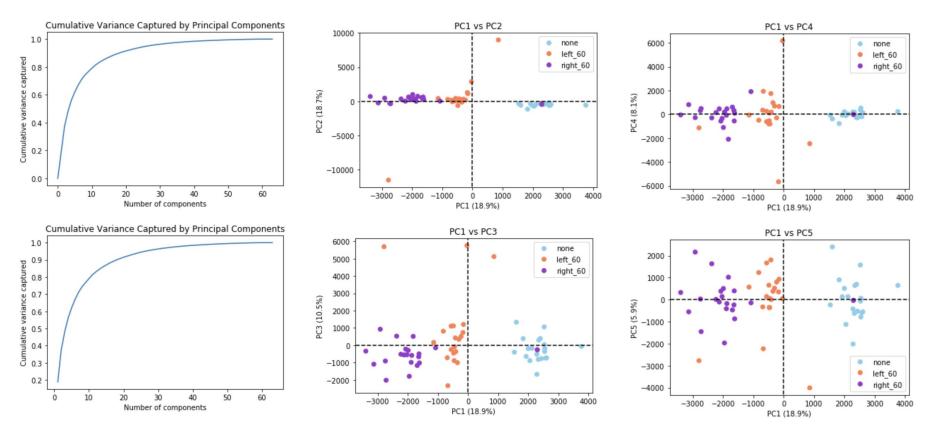
Heatmaps - 353 Channels

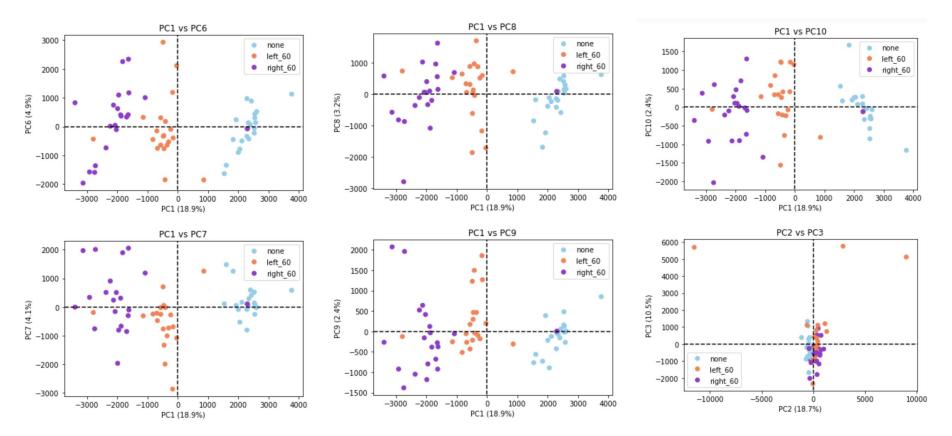


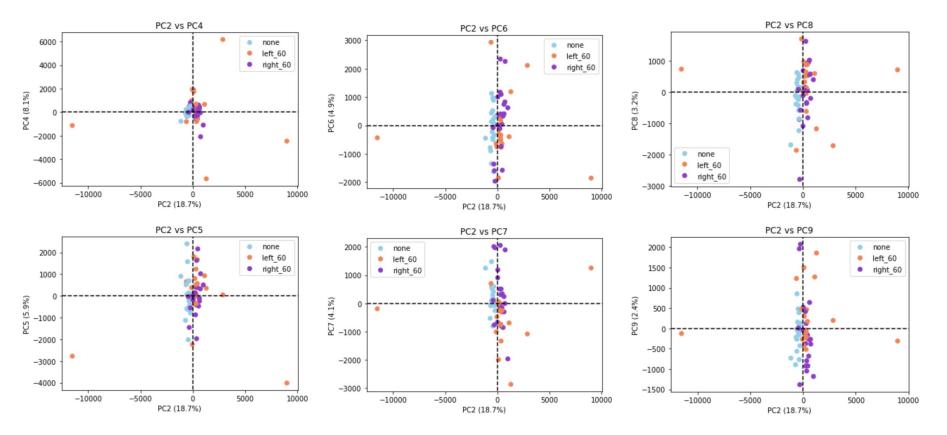


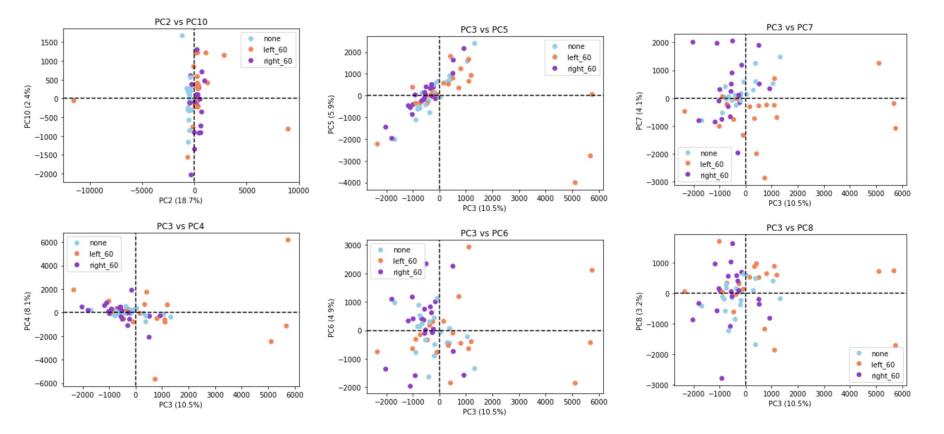


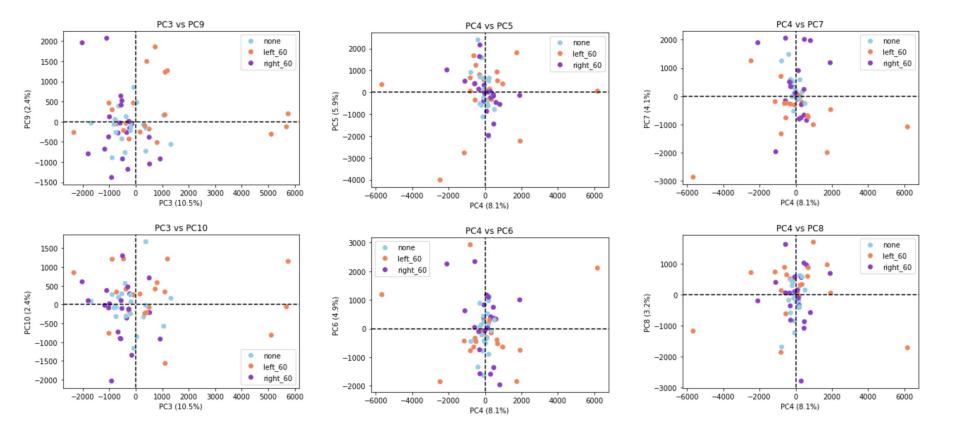


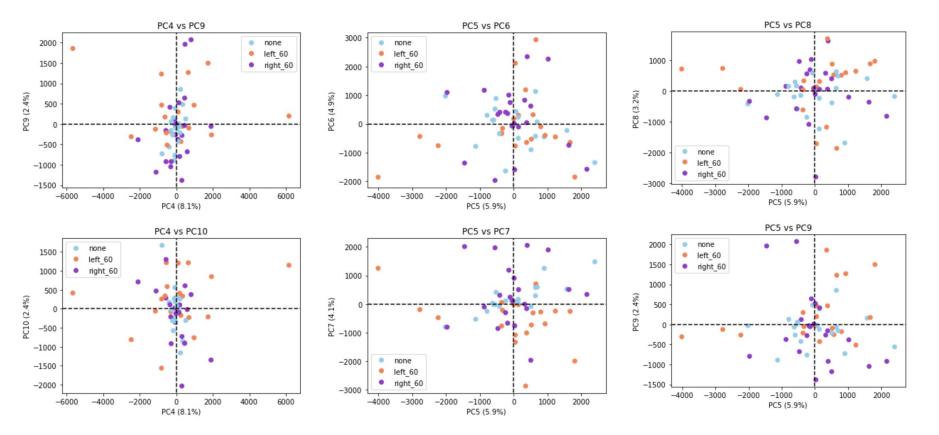


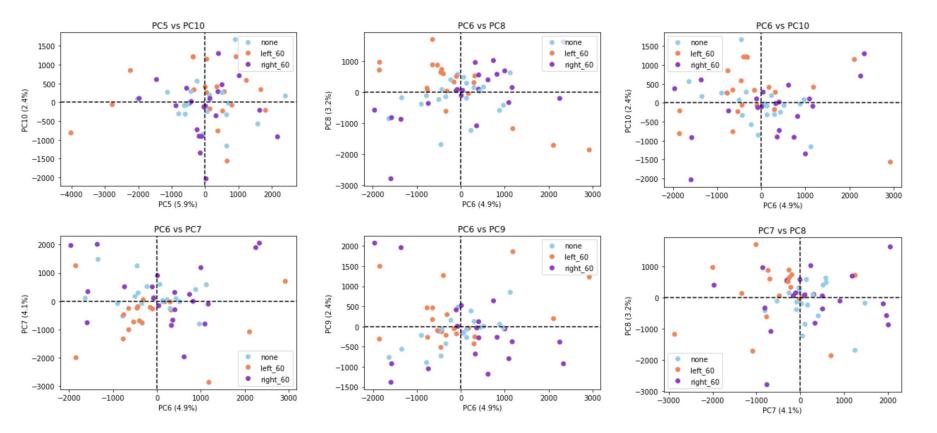


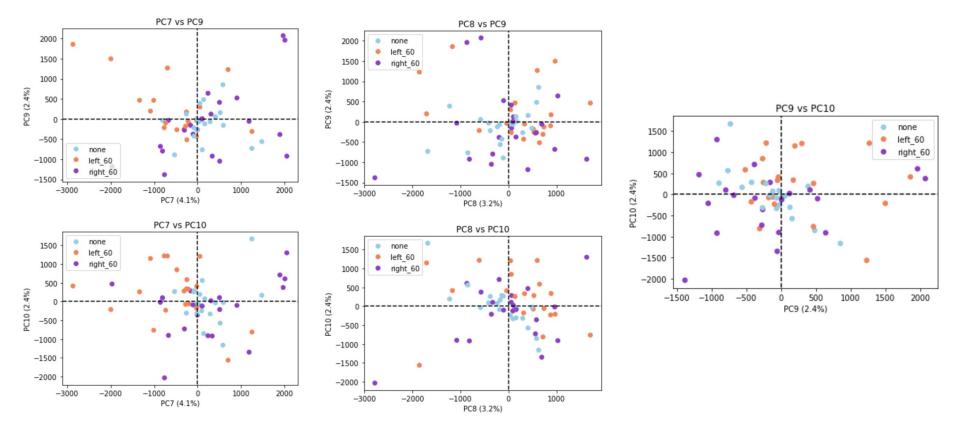




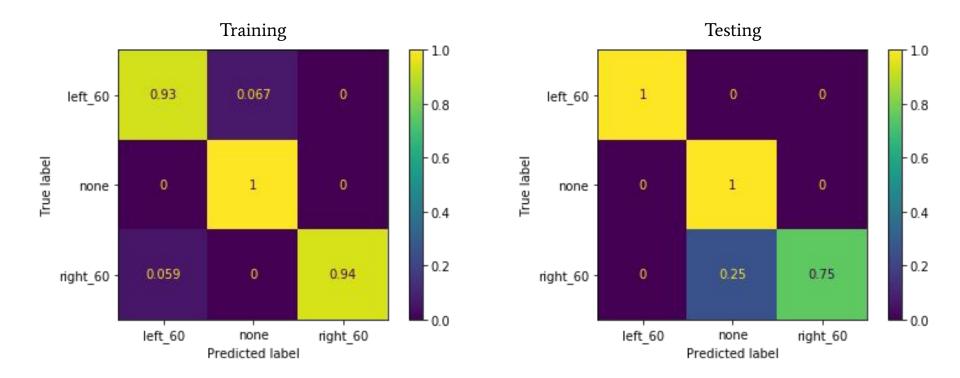




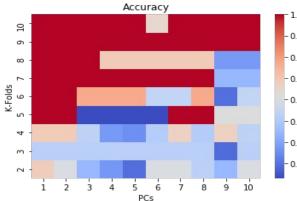


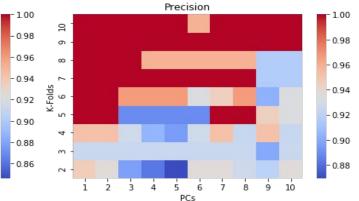


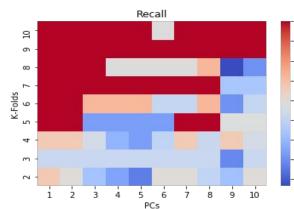
Confusion matrix - 310 channels, 3 groups

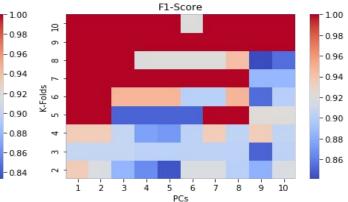


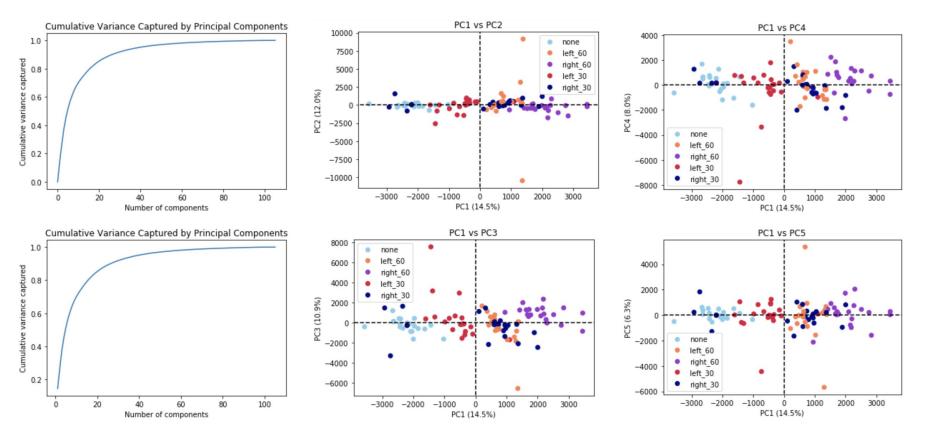
Heatmaps - 310 Channels, 3 groups

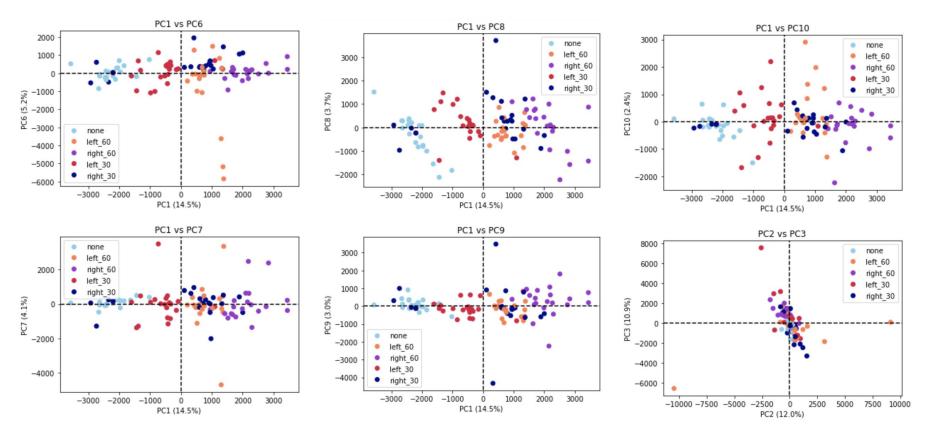


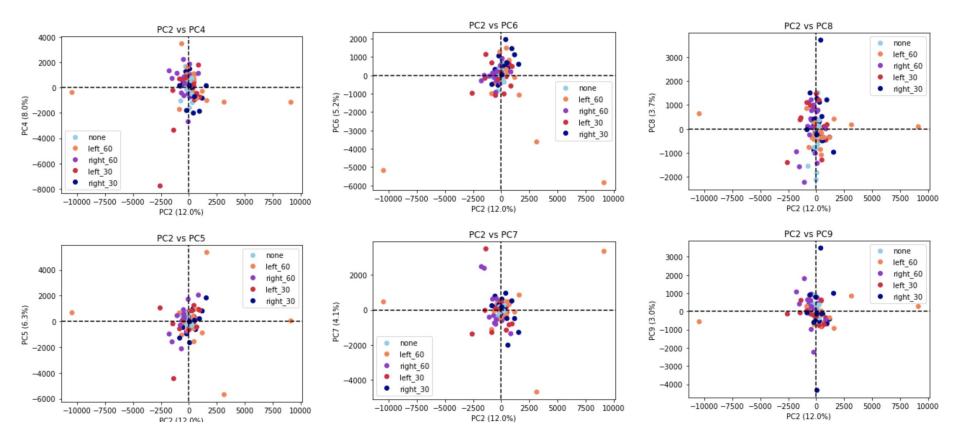


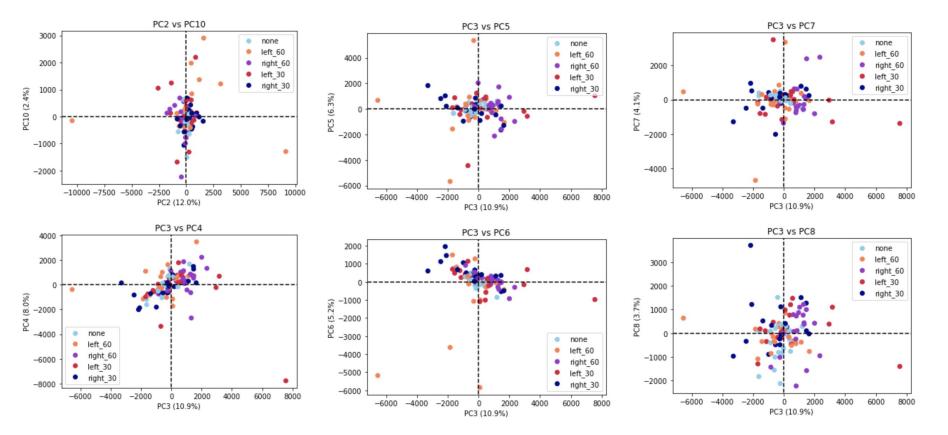


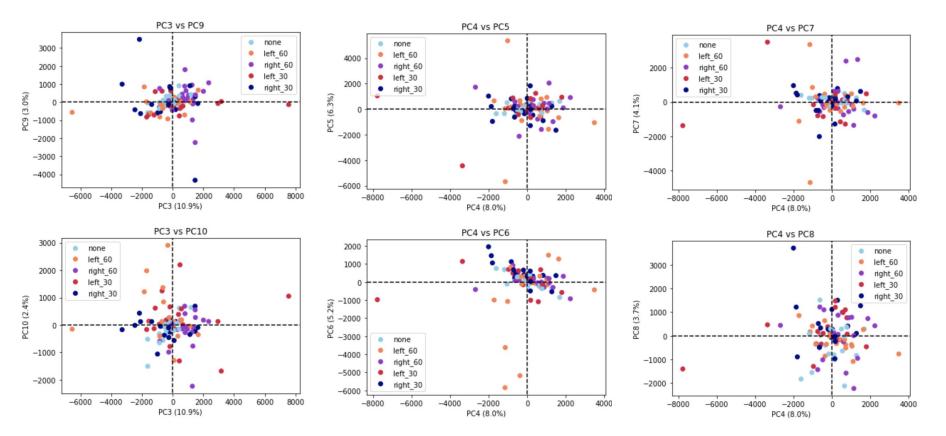


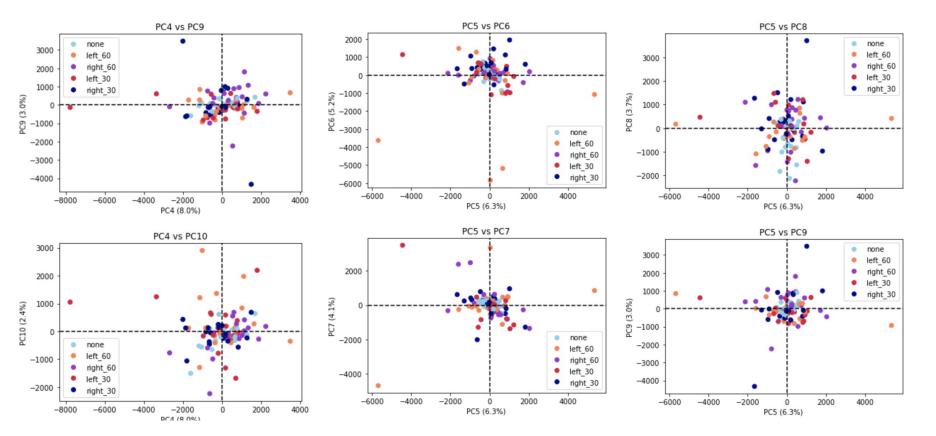


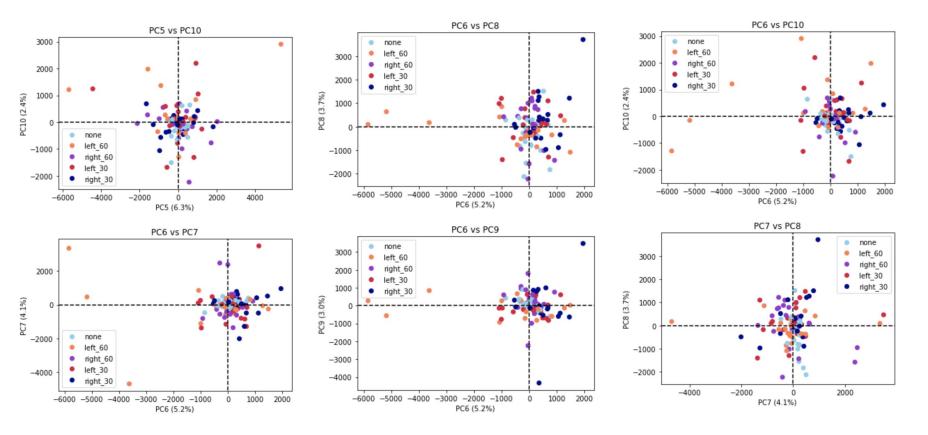


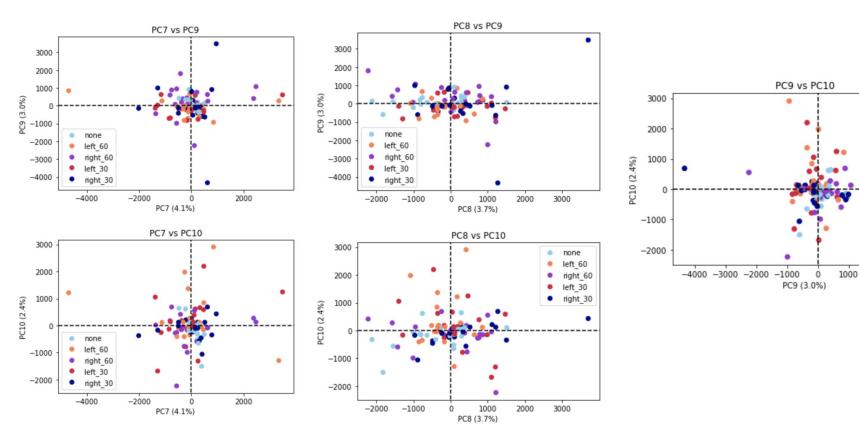












none left 60

right 60

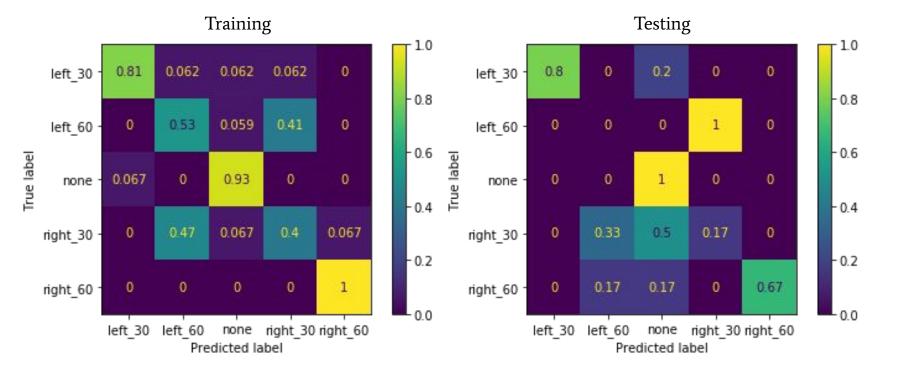
left 30

right 30

3000

2000

Confusion matrix 310 channels, 5 groups



Heatmaps - 310 Channels, 5 groups

3

σ

œ

7

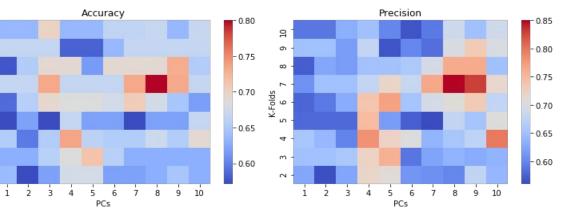
ŝ

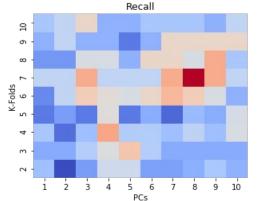
4

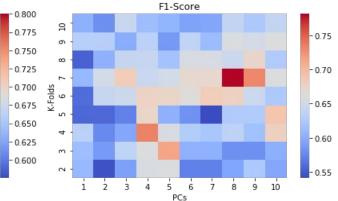
m

 \sim

K-Folds 6







Example bad channels

