BENG 212 Final Project

Revealing location-specific variation and drug transport specificity in the Allen Brain Atlas

Kevin Rychel and Margot Wagner

March 19, 2019

Introduction to the Allen Brain Atlas

Allen Brain Atlas Overview

- Project by the Allen Institute for Brain Science since 2003
- Goal: insights into whole brain function
 - Emphasize disease treatment: Parkinson's, Alzheimer's, autism, etc.
- Contents
 - 'All genes All structures' microarray
 - Used to obtain transcriptomic differences between structures
 - Human and Mouse
 - Development, aging, and disease
 - Imaging: histology, MRI
 - Tools for visualization
 - More recently: RNA-seq of two human brains
 - Single cell data

Chosen dataset

RNAseq

- 121 samples from 82 unique areas
- 22,318 genes

Preprocessing

- log(TPM + 1)
- Remove genes \rightarrow 7,530 remain
 - Low/constant expression
 - Sequence < 100 nt

	ound) ound)					
Tissue Receipt Date	8/25/2009					
Sex	Male					
Age	39 years					
Race/Ethnicity	African Am	erican				
Handedness	Left					
Postmortem Interval	10 hours (e	stimated time of death to time that tiss	ue is frozen)			
Serology	Pass	Pass				
Toxicology	Positive for atropine, caffeine, lidocaine and monoethylglycinexylidide (MEGX) at levels usually not toxicologically significant					
Tissue pH	6.86	6.86				
RNA Quality	Pass	Region Tested	RIN value (Mean ± SD)			
		Frontal pole (left & right)	7.5 ± 0.2			
		Occipital pole (left & right)	7.1 ± 1.0			
		Cerebellum (left & right)	8.6 ± 0.6			
		Brainstem	7.3 ± 0.0			
Neuropathology	MRI-based Microneuro cortex	MRI-based Radiology Report: Normal; possible small pituitary adenoma Microneuropathology: Normal; single neurofibrillary tangle in entorhinal cortex				
Tissue Received	25 cerebral 17 cerebell irreparable 1 brainstem	25 cerebral slabs in coronal orientation; 5 mm thickness 17 cerebellar slabs in sagittal orientation; 5 mm thickness; 1 broken and irreparable 1 brainstem, whole				
Additional Medical Information	None known					

Project Summary

Part 1: Understanding the dataset

- Brain Structures
- PCA
- Agglomerative and K-Means clustering
- Part 2: Supervised learning
- Different model performances
- Different brain resolutions

Part 3: Drug Transport

- Workflow for estimating structure-specific drug susceptibility
- Prediction of drug uptake

Can we predict where drugs end up in brain?

Does RNA expression predict region?

Data Visualization

Increasing Resolution

Structures

Distribution of Main Structures

Supervised Learning:

How well can a model differentiate between brain regions from gene expression data?

Overview

Shotgun classifier testing

Decision Tree

- Support Vector Machine (SVM)
- K-Nearest Neighbors
- Logistic Regression
- Gaussian Naive Bayes
- Random Forest

Top model refinement

• Bootstrapping

- Cross-validation
- Regularization

Coarse Grain Training

- Trained and tested 5 multiclass classifier for each resolution
- Multinomial Logistic Regression
 and Random Forest performed
 the best across resolutions

Feature(f)

Multinomial Regression

- Performance decreases as number of classes increases
- Cross-validation proves no overfitting for 3 class
 - Others not enough samples
- L2 regularization
 - L1 could not converge
- One-vs-all
- 3 class: 50% overlap in genes between brainstem and cortex
 - No overlap with cerebellum

Accuracy with Increasing Structural Resolution

Cerebellum

RORC

Brainstem

Cortex

Z-score of log(TPM+1)

PL 1090 HF 0L PL 1L Anny 69 Str 0, 197, 195 COA 1913 MY R080-A,21,924107

Random Forest

- Performance decreases as number of classes increases
- Initially built until fully expanded
- Inherently multiclass

True SUGT1P1 <= 1.98

qini = 0.5

samples = 57

value = [32.27, 0.0, 35.68]

class = Cortex

gini = -0.0

samples = 3

value = [32.27, 0.0, 0.0]

class = Cerebellum

MT1L <= 0.73 gini = 0.64

samples = 69 value = [32.27, 60.5, 38.39] class = Subcortex

False

ASGR2 <= -1.18

gini = 0.08

samples = 12

value = [0.0, 60.5, 2.71

class = Subcortex

gini = -0.0

samples = 8

value = [0.0, 60.5, 0.0]

class = Subcortex

gini = 0.0

samples = 4

Accuracy with Increasing Structural Resolution

Early Stopping

• Both trees can do early stopping while maintaining performance

Outcomes

- Very good performance for 3 class
 - Significant drop off after that
- Can obtain useful information from 3 and 10 class models
- Multinomial regression can more easily show biological information
- Transcription factor expression useful for 3 class differentiation

Supervised learning possible at low resolution from this dataset

Drug Transport:

How much does a given brain region take up a given drug?

Motivation

Apply a new scientific paradigm: carrier-mediated drug uptake

(Dobson & Kell, Nature Reviews Drug Discovery, 2008)

Inform targeted drug discovery

Understand off-target effects

Images:

https://www.merckmanuals.com/home/brain_spinal-cord,-and-nerve-disorders/brain-dysfunction/brain-dysfunction-by-location/ https://www.pearson.com/us/higher-education/program/Mathews-Biochemistry-4th-Edition/PGM39253.html

Overview of workflow

Inputs:

Allen Brain Atlas Location-specific RNA expression

> **RECON3D** Transporter/Metabolite DB

DrugBank Drug/Structure information Tools:

COBRApy Entrez gene DB Indigo Cheminformatics Knowledge from BENG 212

Outputs:

TADSITransport Activity/Drug Similarity Index
(each drug, structure pair)

Ranked list of interactions

Statistical comparisons

Detailed workflow

Reduced dimensions of transporter geneset

Gene	Metabolite	Expression location/Details
SLC14A1	Urea	Expressed in erythrocytes and the kidney
SLC16A8	Monocarboxylates	Cerebellar choroid plexus: basal epithelia
SLC6A7	L-proline, Na+	Expressed in brain. Proline acts as neurotransmitter

Gene-Reaction Mapping

 $log(TPM_g)$

n_{reactions},

 \approx Activity of given reaction

- Not proteomics \rightarrow ignore protein-level regulation
 - Assume no transport complexes
- Assume each gene has equal activity for each reaction it performs
- Assume the contributions of each gene are additive

Metabolite activity in each brain region

 \sum Activity_r \approx Activity of given metabolite

Potential Improvements:

- Expand database
- Single-cell omics
- Network information
 - Flux direction
 - Transporter affinity
 - Metabolite concentrations

Cheminformatics Workflow

Metabolite:Metabolite Similarity

Metabolite:Drug Similarity

Rule of 0.5

$$Similarity_{d,m} = \frac{|f_d \cap f_m|}{|f_d| + |f_m| - |f_d \cap f_m|} * \left(\frac{|f_d \cap f_m|}{|f_d| + |f_m| - |f_d \cap f_m|} > 0.5\right)$$

Drugs with similarity < 0.5 cannot use a metabolite's transporter

S. O'Hagan et al, Metabolomics, 2015

- 0.8

TADSI Matrix

Transport Activity Drug Similarity Index [TADSI] = [Met:Drug Similarity]^T × [Met:Sample Activity] Scaled by standard deviation of full matrix

- No highly specific drugs
- 4 clusters, 3 of which are active
 - 1 somewhat specific to cerebellum

TADSI Drug Clusters

Cluster 3: Representative Drugs

1	Larazotide	Cell permeability suppression for celiac disease
2	N-(3-Propylcarbamoyloxirane-2-carbonyl)-isoleucyl-proline	Experimental cathepsin B inhibitor (proteolysis)
3	Rapastinel	Clinical trials for depression , OCD
4	Perindopril	ACE inhibitor (hypertension)
5	Lisinopril	ACE inhibitor (hypertension)
6	Enalaprilat	ACE inhibitor (hypertension)
7	N-[1-Hydroxycarboxyethyl-Carbonyl]Leucylamino-2-Methyl-Butane	Experimental cathepsin B inhibitor (proteolysis)
8	Ethylaminobenzylmethylcarbonyl Group	Experimental candidapepsin-2 inhibitor (proteolysis)
9	Methyl-n-({(2s,3s)-3-[(Propylamino)Carbonyl]Oxiran-2-yl}Carbonyl)-l-isoleucyl-l-prolinate	Experimental cathepsin B inhibitor
10	Ciclosporin	Immunosuppression

SA:V ratio may contribute to differential uptake

Hypothesis: More surface area \rightarrow more transporters

Outcomes

- Predicted uptake of 343 drugs in cortex and cerebellum
 - Mainly amino acids and peptides
 - At least one experimental antidepressant
- Demonstrated differences between three brain parts
 - Highest uptake: cerebellum
 - Lowest uptake: subcortex
- Identified areas for improvement
 - Single cell resolution
 - Thorough annotation
 - Integration with other omics data/networks
 - Drug localization experiments for validation

Limitations

- Very incomplete transporter list
 - Master's project: complete annotation
 - 81 genes, 451 reactions, 78 metabolites
- Tanimoto similarity
 - May not predict affinity
- Coarse granularity
 - RNAseq run on sections of brain instead of single cells
 - Blood-Brain-Barrier permeability ignored
- Disease state ignored
- Long list of assumptions

Assumptions

- 1. Transporter activity is only determined by its RNA concentration
 - a. Ignores protein level regulation
 - b. Ignores kinetics, affinities, and metabolite concentrations
- 2. Transporters carrying out the same transport event behave independently
 - a. No complexes or preferential transport affinities
- 3. Each unique transport reaction occupies an equal fraction of a promiscuous transporter's activity
- 4. Flux direction is ignored
- 5. For drug/metabolite similarities above a threshold, the activity of the drug scales with its similarity
- 6. Drug and metabolite activities through each transporter in a region are additive

Conclusion

Conclusion

Part 1:

- Supervised learning possible at low resolution from this dataset
- 3 and 10 class analysis works well
- Biological relevance vs. minimizing overfitting

Part 2:

- Predicted uptake of 343 drugs in cortex and cerebellum
- Demonstrated differences between three brain parts
- Identified areas for improvement
 - Single cell resolution
 - Thorough annotation
 - Integration with other omics data/networks
 - Drug localization experiments for validation

Thanks for listening!

References

- 1. 2010 Allen Institute for Brain Science. Allen Human Brain Atlas. Available from: human.brain-map.org
- 2. Shen, E.H., Overly, C.C., Jones, A.R. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. *Trends Neurosci* vol. 35, 12 (2012): 711-4.
- 3. Kukurba, K.R., Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb Protoc vol. 11 (2015): 951-69.
- 4. Hawrylycz, M.J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature vol. 489 (2012): 391-99.
- 5. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nature Neuroscience vol 18 (2015): 1832-44.
- 6. Mendes, P., Oliver, S.G., Kell, D.B. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly. *Trend Pharmacol Sci* vol. 36, 11 (2015): 710-23.
- 7. Bajusz, D., Racz, A., Heberge, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? *Journal of Cheminformatics* vol. 7, 20 (2015)
- 8. P.D. Dobson, D.B. Kell, Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule?, *Nature Reviews Drug Discovery*. 7 (2008) 205–220. doi:10.1038/nrd2438.
- 9. S. O'Hagan, N. Swainston, J. Handl, D.B. Kell, A 'rule of 0.5' for the metabolite-likeness of approved pharmaceutical drugs, *Metabolomics*. 11 (2015) 323–339. doi:10.1007/s11306-014-0733-z.
- 10. Wishart DS, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2017 Nov 8. doi: 10.1093/nar/gkx1037.
- 11. E. Brunk, et al., Recon3D enables a three-dimensional view of gene variation in human metabolism, Nat. Biotechnol. 36 (2018) 272–281. doi:10.1038/nbt.4072.
- 12. D. Pavlov, M. Rybalkin, B. Karulin, M. Kozhevnikov, A. Savelyev, A. Churinov, Indigo: universal cheminformatics API, J Cheminform. 3 (2011) P4. doi:10.1186/1758-2946-3-S1-P4.
- 13. Entrez Help [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005-. Entrez Help. 2006 Jan 20 [Updated 2016 May 31].

Questions?

Correlations

Non-replicate pairs with highest correlations:

	Sample 1	Structure 1	Substructure 1	Ontology 1	Hemisphere 1	Sample 2	Structure 2	Substructure 2	Ontology 2	Hemisphere 2	Correlation	SU
0	S020134_L4.LB22	FL	MFG	MFG-s	L	S020291_L8.LB15	FL	MFG	MFG-i	L	0.996198	tio
1	S020190_L6.LB5	PL	SMG-i	SMG-i	L	S020348_L8.LB16	PL	SMG-i	SMG-i	R	0.995369	pu
2	S020198_L2.LB10	TL	MTG	MTG-i	L	S020262_L8.LB20	PL	AnG-i	AnG-i	L	0.994884	5
3	S020024_L8.LB22	FL	orIFG	orIFG	L	S020094_L2.LB6	FL	OrbGyri	MOrG	L	0.994715	nt
4	S020038_L3.LB8	FL	MFG	MFG-s	R	S020235_L2.LB5	FL	PCLa-i	PCLa-i	L	0.994557	ere
Pa	Pairs with the lowest correlations:											

	Sample 1	Structure 1	Substructure 1	Ontology 1	Hemisphere 1	Sample 2	Structure 2	Substructure 2	Ontology 2	Hemisphere 2	Correlation
0	S020215_L4.LB23	Str	Putamen	Pu	R	S020722_L4.LB25	CbCx	CbCx	He-Crus II	L	0.022171
1	S020215_L4.LB23	Str	Putamen	Pu	R	S020656_L7.LB18	CbCx	CbCx	He-VIIIA	R	0.022912
2	S020215_L4.LB23	Str	Putamen	Pu	R	S020671_L7.LB16	CbCx	CbCx	PV-IV	R	0.023257
3	S020215_L4.LB23	Str	Putamen	Pu	R	S020697_L1.LB3	CbCx	CbCx	PV-VIIB	L	0.024174
4	S020215_L4.LB23	Str	Putamen	Pu	R	S020671_L7.LB16b	CbCx	CbCx	PV-IV	R	0.025753
5	S020206_L6.LB7	Str	Putamen	Pu	L	S020722_L4.LB25	CbCx	CbCx	He-Crus II	L	0.041097
6	S020206_L6.LB7	Str	Putamen	Pu	L	S020697_L1.LB3	CbCx	CbCx	PV-VIIB	L	0.042085
7	S020206_L6.LB7	Str	Putamen	Pu	L	S020656_L7.LB18	CbCx	CbCx	He-VIIIA	R	0.044123
8	S020055_L3.LB12	Str	Caudate	HCd	R	S020722_L4.LB25	CbCx	CbCx	He-Crus II	L	0.047550
9	S020109 L3.LB13	FL	SFG-m	SFG-m	Ľ	S020671 L7.LB16	CbCx	CbCx	PV-IV	R	0.047973

4.0 1000 - 3.5 800 3.0 Biological Replicates 600 400 1.0 200 0.5 0.0 0.0 0.2 0.4 0.6 0.8 10 Pearson R correlation Replicate Correlations:

{ 'S020173': 0.9609132285955708, 'S020181': 0.9918103371114042, 'S020183': 0.9908425213183575, '\$020237': 0.9945104162802172, 'S020671': 0.9927718829425117}

Pearson R Correlation Between Samples

Covariance Matrix

Substructures

PCA

Cortex PCA Genes

on Gene Ontolo	Description	Gene
r 4 ATPase activity, ATPase activity coupled to transmembrane moveme	ATP Binding Cassette Subfamily Member 4	ABCB4
e 2 Signaling receptor binding, oxidoreductase activity acting on the CH-CH	Acyl-CoA Oxidase 2	ACOX2
e 1 Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides, dihydroce	Alkaline ceramidase 1	ACER1
12 Signaling receptor binding, ATPase activity coupled to transmembrane moveme	ATP Binding Cassette Subfamily A Member 12	ABCA12
g 2 RNA binding, adenosine de	Adenosine Deaminase Domain Containing 2	ADAD2

Multinomial LR Genes (3 Classes)

	coef	coef
LHX8	-0.004049	0.004049
SFTA3	-0.003985	0.003985
ECEL1	-0.003976	0.003976
NCAPG	-0.003906	0.003906
GBX2	-0.003868	0.003868
KCNE1L	-0.003866	0.003866
FAM180B	-0.003853	0.003853
MPPED1	0.003839	0.003839
SDS	-0.003824	0.003824
INSRR	-0.003817	0.003817

	coef	coef		coef	coef
RORC	0.002476	0.002476	LHX8	0.004613	0.004613
TFAP2B	0.002468	0.002468	SFTA3	0.004611	0.004611
DEFB1	0.002468	0.002468	ECEL1	0.004548	0.004548
GCOM1	0.002467	0.002467	SDS	0.004443	0.004443
C7orf16	0.002466	0.002466	HPSE2	0.004361	0.004361
KRT31	0.002464	0.002464	NKX2-1	0.004295	0.004295
PAX2	0.002463	0.002463	APOC1	0.004129	0.004129
PCP2	0.002454	0.002454	GBX2	0.004045	0.004045
SCNN1G	0.002454	0.002454	LOC150381	0.004016	0.004016
BARHL1	0.002452	0.002452	FABP6	0.003981	0.003981

Multinomial LR Genes (3 Classes)

Gene			Description		Ge	ene Ontology Annotations		
RORC	RAR Related Orphan Receptor C			AR Related Orphan Receptor C DNA-binding transcription factor activity, s				
TFAP2B		Tran	scription Factor AP-2 Beta	DNA-binding transcription factor activity, sequence-specific				
DEFB1	Defensin Beta 1 Hydrola			ydrolase ac	tivity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides,	, dihydroceramidase activity		
GCOM1		F	RINL1A Complex Locus 1		Readth	rough transcription variation		
C7orf16	Protein Phosphate 1 Regulatory Subunit 17		e 1 Regulatory Subunit 17		Microbicidal a	nd cytotoxic peptide activity		
	1	Gene	De	escription	Gene Ontology Annotations			
		LHX8	LIM Ho	meobox 8	Sequence-specific DNA binding			
	S	FTA3	Surfactant As	sociated 3	Metabolism activity			
	E	CEL1	Endothelin Converting Enzy	/me Like 1	metalloendopeptidase activity, metallopeptidase activity			
		SDS	Serine De	ehydratase	protein homodimerization activity, L-serine ammonia-lyase activity			
	H	PSE2	Hep	aranase 2	heparan sulfate proteoglycan binding, heparanase activity			
	Gene De:		Descri	iption	Gene Ontology Annotations			
	LHX8	LHX8 LIM Hor		box 8	Sequence-specific DNA binding			
	SFTA3		Surfactant Associa	ated 3	Metabolism activity			
	ECEL1		Endothelin Converting Enzyme I	Like 1	metalloendopeptidase activity, metallopeptidase activity			
	NCAPG	Non-	SMC Condensin I Complex Sub	unit G	binding			
	GBX2		Gastrulation Brain Homeo	box 2 DNA	A-binding transcription factor activity, sequence-specific DNA binding			

Random Forest Top Genes (3, 10, 29, 82)

coef coef		coef	coef	
0.001519 0.001519	HAPLN3	0.002611	0.002611	CTXN3
0.001421 0.001421	LCT	0.002586	0.002586	LXN
0.001421 0.001421	ADAMTSL5	0.002558	0.002558	METTL7B
0.001384 0.001384	FLJ42351	0.002386	0.002386	CELSR1
0.001365 0.001365	RGPD3	0.002080	0.002080	CHRM2
0.001311 0.001311	C2orf54	0.001942	0.001942	LRRC38
0.001282 0.001282	AOX1	0.001911	0.001911	SLN
0.001187 0.001187	REM1	0.001897	0.001897	ZSCAN5B
0.001174 0.001174	FMOD	0.001861	0.001861	ST8SIA2
0.001168 0.001168	ICAM5	0.001857	0.001857	FAM46C

	coef	coef		coef	coef
MYOZ1	0.011939	0.011939	ATP2C2	0.005976	0.005976
TFCP2L1	0.011648	0.011648	RSPH10B2	0.005390	0.005390
HRK	0.011129	0.011129	CTXN3	0.005369	0.00536
BUB1	0.010904	0.010904	ВТК	0.005274	0.005274
DNAJC5G	0.010798	0.010798	MAB21L1	0.005003	0.005003
TRIB3	0.010715	0.010715	DUSP4	0.004884	0.004884
NHLH2	0.010085	0.010085	KRT31	0.004673	0.004673
C21orf128	0.009653	0.009653	SLC5A7	0.004138	0.004138
NCRNA00246B	0.009576	0.009576	ONECUT2	0.004100	0.00410
TRIM54	0.009400	0.009400	BCL11B	0.003971	0.00397