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A B S T R A C T   

While the brain mechanisms underlying selective attention have been studied in great detail in controlled lab
oratory settings, it is less clear how these processes function in the context of a real-world self-paced task. Here, 
we investigated engagement on a real-world computerized task equivalent to a standard academic test that 
consisted of solving high-school level problems in a self-paced manner. In this task, we used EEG-source derived 
estimates of effective coupling between brain sources to characterize the neural mechanisms underlying switches 
of sustained attention from the attentive on-task state to the distracted off-task state. Specifically, since the 
salience network has been implicated in sustained attention and attention switching, we conducted a hypothesis- 
driven analysis of effective coupling between the core nodes of the salience network, the anterior insula (AI) and 
the anterior cingulate cortex (ACC). As per our hypothesis, we found an increase in AI - > ACC effective coupling 
that occurs during the transitions of attention from on-task focused to off-task distracted state. This research may 
inform the development of future neural function-targeted brain-computer interfaces to enhance sustained 
attention.   

1. Introduction 

Cognitive control is a fundamental human ability that allows us to 
flexibly pay attention to and act upon goal-relevant information, while 
further suppressing irrelevant distractions (Badre, 2011; Lenartowicz 
et al., 2010; Luna et al., 2015; Mishra et al., 2013). Likewise, attention is 
fundamental to cognitive control, and higher cognitive skills such as 
working memory, learning, and task planning are crucially dependent 
on it (Fortenbaugh et al., 2017; Gazzaley and Nobre, 2012). Relevant to 
modern times, sustained attention has been shown to be impacted by the 
overuse of distracting technologies (Ophir et al., 2009; Ziegler et al., 
2015). It has been estimated that U.S. children and youth spend an 
average of 9 h of their day consuming media in the form of television, 
internet, email, video games, social networks, and interaction with 
mobile devices (Common Sense Media, 2015), and that this usage is 
impacting attention and cognition (Walsh et al., 2020). 

Attention and cognitive control have been traditionally studied in 
tightly controlled laboratory settings. Yet it is important to study 
attention in real-world contexts that can shed better light on how the 
brain efficiently processes information in complex situations and envi
ronments (Peelen and Kastner, 2014). Hence, in this study, our objective 
was to investigate the neural dynamics underlying performance on a 
self-paced, loosely constrained, real-world computerized task. Specif
ically, we were interested in exploring whether brain connectivity 
within the salience network, a well-characterized brain network 
involved in attentional switching (Dosenbach et al., 2006; Menon and 
Uddin, 2010), can be harnessed using EEG source imaging and if this 
network is associated with attention switching from on-task to off-task 
state. 

Previous studies have shown that periods of poor sustained attention 
are characterized by high response time (RT) variability and frequent 
on-task errors (Esterman et al., 2012; Fortenbaugh et al., 2015). These 
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metrics can be obtained on trial-based continuous performance tasks 
(CPTs) where individuals discriminate task-relevant target information 
from task-irrelevant non-targets (Conners et al., 2003). Fortenbaugh 
et al. (2015) acquired data from thousands of individuals across the 
lifespan on a CPT paradigm and showed that when subjects were 
attentive (or “on-task”), they exhibited lower RT variability and higher 
discrimination ability as opposed to when they were distracted (or 
“off-task”). Moreover, RT variability has been proposed as a behavioral 
marker for Attention Deficit Disorder (ADD) (Di Martino et al., 2008). 
Building upon these findings, here we propose to define periods of pu
tative sustained attention and distraction from the variability of 
keystroke and mouse click events produced by the subject during a 
real-world task. 

In our case, the real-world computerized task was a 1-h task, akin to a 
standard academic test, consisting of solving high-school level problems, 
combining self-chosen modules of math, critical reading and compre
hension and performed in a self-paced manner. To characterize the 
fluctuations in brain dynamics that are predictive of distracted behav
iors at a millisecond time scale, we continuously monitored brain dy
namics with electroencephalography (EEG). In addition to its excellent 
temporal resolution, EEG is appealing for real-world applications 
because it is noninvasive and available as a low-cost mobile technology 
(Bateson et al., 2017; Kumari et al., 2017). Furthermore, we used EEG 
source imaging rather than sensor activity to localize the brain dynamics 
around attention switching events because the latter is often confounded 
by multiple ongoing brain processes and other non-neural (ocu
lar/muscular) signals (Ojeda et al., 2019, 2021). 

Although central to our approach, source estimation alone cannot 
reveal how different brain regions interact dynamically to support 
attentive and distracted behaviors. To that end, we use source time se
ries to estimate source connectivity. Popular approaches for estimating 
EEG source connectivity use parametric models based on strong bio
physical (David et al., 2006; Kiebel et al., 2009) or statistical (Giraldo 
et al., 2010; Yamashita et al., 2004) assumptions. These approaches tend 
to give reasonable results when analyzing event-related brain responses. 
In this study, we aimed to characterize source connections on an 
ongoing basis, i.e., not in an event-related design and more akin to 
steady-state, non-stationary dynamics wherein the assumptions of the 
parametric models are hard to justify. To circumvent these issues, Lizier 
et al. (2008) proposed to compute the transfer entropy (TE) between the 
electrical activity of pairs of brain areas, conditioned on the activity of 
all the other areas, as a non-parametric measure of their effective 
(causal) connectivity (EC). Furthermore, it has been shown that 
TE-based EC is sensitive to ongoing linear and nonlinear brain dynamics 
(Wibral et al., 2014). 

Data-driven characterization of the EC of large-scale cortical net
works active in the context of attention switching in a real-world task is 
not statistically viable in sample sizes used in psychological studies. 
Hence, we adopted a hypothesis-driven approach focusing on testing 
whether we can specifically detect salience network activity/connec
tivity using EEG source imaging during the transitions from on-task to 
off-task states. The salience network has core regional nodes connecting 
the anterior insula (AI) and the anterior cingulate cortex (ACC). Based 
on results from fMRI data, Menon and Uddin (2010) proposed the AI as a 
hub that mediates the dynamic interactions between different 
large-scale networks and is implicated in attention switches driven by 
external and internal events. In their model, Menon and Uddin (2010) 
postulate that the AI is sensitive to salient external vs. internal events, 
and that its key function is to identify such events for additional pro
cessing, while the coupling with ACC facilitates rapid access to the 
motor system, thereby triggering behavioral changes when needed. 
Specifically, the salience network mediates the dynamic switching be
tween the exogenously driven frontoparietal network and the endoge
nously mediated default mode network. The activity of the salience 
network is also shown to be more lateralized to the right (rAI) (Menon 
and Uddin, 2010; Uddin, 2017; Zhang et al., 2019). To the best of our 

knowledge, the coupling between the ACC and rAI nodes in the salience 
network during a real-world computerized task involving self-paced 
attention switches from externally-driven to internally-driven states, 
has not been explored. So, to this end, here we hypothesize that within 
the transition period from on-task to off-task behavior, there may be 
causal coupling from rAI to ACC. 

2. Materials and methods 

2.1. Task description and experimental setup 

A total of 25 healthy young adult subjects (mean age 23.3 ± 5.7 
years; 13 females and 12 males) participated in the study. All partici
pants had completed high school level education and had normal/cor
rected to normal vision and hearing and did not report any color 
blindness. All participants were informed of the nature of the experi
ment and provided written informed consent. The experiment was 
approved by the IRB committee of the University of California San 
Diego. Data for 8 of the 25 subjects were excluded in EEG preprocessing, 
see section 2.3 EEG processing and source estimation section. Hence, all 
data are presented for a subset 17 healthy adult subjects (subset mean 
age 24.7 ± 6.6 years; 12 females and 5 males). 

The computerized task consisted of solving high-school level prob
lems combining self-chosen modules of math, critical reading and 
comprehension for 1 h. The task and example questions can be found 
here: https://www.prepfactory.com/. Examples of math questions are, 
‘(i) If 3x = 6, what is x?; (ii) x2 + 3x + 2 = (x+2)*___’ Examples of 
reading and comprehension questions are, ‘(i) Essays begin with a(n) 
Introduction/Transition/Conclusion; (ii) What’s the best introduction? 
Summarily, we concluded …/To begin, it is …/After all, there was 
…/Accordingly, we tried … ‘. 

The subjects were instructed to work through the problems at their 
own pace. All questions were multiple choice only and did not involve 
answers to any open-ended questions; subjects were encouraged to 
continuously work on the multiple choice questions in a self-paced 
manner. Difficulty of questions was automated and adaptive to subject 
performance such as in a real-world computerized academic test; as the 
task was an online test, the exact adaptive algorithm was not known to 
the authors. We did not record individual subject performance scores. As 
in any real-world computerized task, we allowed them to self-choose 
when to be on-task and when to be distracted and move away from 
the task, with the only requirement to move away from the computer 
during breaks (see Fig. 1). 

We measured each subject’s behavior by capturing the keystroke and 
mouse-click events they generated throughout the task. To this end, we 
implemented a secure key and mouse logger app that ran in the back
ground. We used the Lab Streaming Layer (LSL (Kothe et al., 2019)) li
brary to co-register the behavioral events with the EEG signal. Each 
keyboard or mouse event captured received a timestamp by sending to 
LSL the characters ‘1’ or ‘2’ respectively, thereby obfuscating the exact 
identity of those events. Participants had to hit the ‘Submit’ button after 
their response to any question was complete. There was a constant gap 
between response to a question and the next question. While all 
keyboard or button press activity was related to responding to the task’s 
multiple choice questions, we did not record actual performance, hence, 
correct vs. incorrect responses cannot be distinguished. But this response 
activity still indicates on-task engagement in that we know that partic
ipants were only interacting with this one computerized academic task. 
They were not allowed to perform any other task, such as web-browsing 
or checking email were disabled on the computer. Further, participants 
were explicitly instructed that they can take self-paced breaks from the 
task, but when they want to do so they must move away from the 
computer so that there are no more keyboard responses or mouse clicks, 
ensuring off-task state of response disengagement. 

We acquired EEG data at 500 Hz sampling frequency using an LSL- 
compatible mobile amplifier (Smarting, mBrainTrain, Belgrade, 
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Serbia) and a 24-channel electrode montage placed according to the 10/ 
20 system. We recorded event markers and EEG data into an EEGLAB- 
compatible .xdf file using the LabRecorder app. 

2.2. Identification of on-task/off-task epochs 

We defined periods of putative sustained attention (on-task) and 
distraction (off-task) using the variability of keystrokes and mouse click 
events produced by the subject during the task. The supporting rationale 
for this comes from prior studies that have shown that response times are 
consistent during on-task “in the zone” periods while they are more 
variable during off-task “out of the zone” states (Esterman et al., 2012; 
Kucyi et al., 2016, 2017). We used a subject-specific 95 percentile of 
response times (RT) to indicate an off-task switch (see left panel of Fig. 2 
and inset histogram); 95 percentile was used as it indicates a signifi
cantly longer response time relative to the subject’s usual RT distribu
tion encompassing a period in which the subject was disengaged from 
the computerized activity, switched off-task and then returned to being 
on-task; similar rationale has been used to mark off-task switches in 

prior studies (Esterman et al., 2012; Kucyi et al., 2016, 2017; Weissman 
et al., 2006). We defined attention switch events as the last behavioral 
event before an off-task period. We note that subjects self-chose when to 
take breaks but were explicitly instructed to move away from the 
computer during breaks; this was so that the experimenters could 
observe off-task periods in the response data. In Fig. 2 we show behavior 
and EEG data from one participant. Fig. 3, on the left shows the total 
number of attention switch event trials collected for each of 17 subjects 
(data for the remaining 8 subjects are not shown because they were 
excluded in EEG preprocessing, see next section). Fig. 3, on the right 
shows the mean and standard deviation of response times of regular 
on-task trials compared to post-off-task response trials; the latter are 
orders of magnitude different than the former and show that on-to 
off-task disengagement clearly occurred after the attention switch trials. 

There were a total of 661 attention switch trials across all subjects 
that were used for EEG attention switch trial analyses. We had very 
adequate power for trial based statistics, sample size of 661 trials can 
detect small Cohen’s d effect sizes ≥0.11 of a mean difference from 
constant at 0.8 power and two-sided alpha of 0.05. 

Fig. 1. Self-paced schoolwork-like computerized 
task. The subjects were instructed to solve problems 
combining self-chosen modules of math, critical 
reading and comprehension for 1 h. They were 
allowed to take as many breaks as they wanted with 
the only requirement to move away from the com
puter during breaks. The blue and red blocks repre
sent putative on-task and off-task periods 
respectively, which we identified using the variability 
of the subject’s interaction with the computer. We 
used EEG data 1 s after and before putative transi
tions from on-task to off-task periods to study the 
network correlates of attention switching. (For inter
pretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Fig. 2. Identification of attention switch events as the transition from on-task to off-task epochs. Left: Behavior of one participant (keystroke and mouse click events) 
captured by the logger app. The inset histogram shows the distribution of response times (RT)s ranging from responses every second to responses once every 10 s over 
the course of the hour-long task duration; the 95 percentile of RTs was used to identify when the subject was going out of the attentive zone, i.e., out of active task- 
engagement into the off-task period. The trials marked with red show the putative end of “on-task” activity, where the next trial has a long RT distribution marking an 
off-task period. The trials marked with green show the identified end of the “off-task” epochs, i.e., the onset of on-task activity. Right: Co-registered behavioral events 
and EEG signals for an example segment exhibiting an attention switch from on-task state (lots of responses, reflected by blue lines) to an off-task state (no response/ 
engagement on the task). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2.3. EEG processing and source estimation 

We processed the EEG data in MATLAB (R2018b The MathWorks, 
Inc., USA) using the EEGLAB toolbox (Delorme et al., 2011). The pre
processing consisted of a 0.5 Hz–50 Hz band-pass zero-lag FIR (finite 
impulse response) filter and re-referencing to the common average 
channel. This choice of filter is convenient for offline analysis as it 
doesn’t shift EEG samples with respect to event markers. We visually 
inspected the data and removed 8 subjects from the study because they 
exhibited more than three faulty channel connections throughout the 
task. Next, we collected trial epochs consisting of 1 s before and after the 
attention switch events and manually removed those excessively 
contaminated by artifacts. Artifacts of EOG (electro-oculographic) and 
EMG (electro-myographic) origin were further cleaned using the 
Recursive Sparse Bayesian Learning (RSBL) source estimation algorithm 
(Ojeda et al., 2018, 2021). 

RSBL is an online-compatible algorithm in which each EEG sample is 
localized based on a prediction from the past sample while imposing 
biologically-inspired sparsity constraints, thereby resulting in compact 
source maps that evolve smoothly in time. The sparsity constraints are 
applied to entire regions of interest (ROI) based on the standard 68 brain 
region Desikan-Killiany (DK) atlas (Desikan et al., 2006) covering the 
whole cortex. Although this partition is fixed, at any given time, the 
algorithm determines the contribution of each of the ROIs in a 
data-driven manner so that cortical regions that are not necessary to 
explain the scalp topography are down-weighted or even set to zero 
automatically. This data-driven pruning procedure reduces the effective 
number of sources considered at any given time as a solution, thereby 
alleviating the ill-posed nature of the inverse mapping. It has been 
shown in prior research from our group and others (Balasubramani 
et al., 2021; Ding and He, 2008; L. Fakhraei et al., 2021; L Fakhraei et al., 
2021; Grennan et al., 2021; Stopczynski et al., 2014) that this feature 
allows obtaining source maps of reasonable accuracy even at low 
channel densities. It is important to note that although the sparsity 
constraint is imposed at the ROI level, the actual value of sources within 
an ROI is not exactly the same, though they can be correlated. 

Another important feature of the RSBL algorithm is that artifacts 
with stereotypical scalp signature can be included in the source model 
(as artifact sources) and their contribution removed automatically. Here 

we modeled EOG and EMG sources based on an artifact dictionary ob
tained from applying ICA to a large EEG database, see (Ojeda et al., 
2018, 2021) for details. Cortical sources were modeled using the 
four-layer (scalp, outer skull, inner skull, and cortex) Colin-27 head 
template (Holmes et al., 1998). 

The output of the RSBL algorithm was a single-trial EEG source es
timates array of 8003 cortical sources by 2 s by trial by subject. Since 
doing connectivity estimation on an 8003 source space would be 
impractical, we further collapsed the source dimension into the 68 
Desikan-Killiany atlas ROIs. We reduced dimensionality by calculating 
the ROI power time-series, which was taken as the sum of squares across 
sources within each ROI. 

2.4. Source effective connectivity estimation 

We used the ROI power time series to calculate the effective (causal) 
connectivity between the rAI and rACC ROIs. Effective connectivity was 
characterized by TE, which we computed on a sliding window of 100 
msec with a 50% overlap. To factor out common influences from other 
ROIs, we conditioned the TE on the activity of the remaining 66 ROIs. 
We used Kraskov’s TE estimator (Kraskov et al., 2004) as implemented 
in the Java Information Dynamics Toolkit (JIDT) (Lizier, 2014). We also 
used cross-correlation in MATLAB to assess the possible causal rela
tionship for rAI→ACC connectivity and to quantify it’s significance. 

We note that the primary hypothesis-driven investigation in this 
study was to assess if rAI – ACC EC is linked with the observed transition 
in subject’s behavior from on-task to off-task periods. For control ana
lyses, during the on-task to off-task period, we also investigated other 
possibly relevant connections. These included the AI – ACC connectivity 
on the left side, i.e. lAI – ACC EC to see if observed coupling is specific to 
the right-lateralized salience network or is bilateral. Apart from the 
salience network, the frontoparietal network is the other main cognitive 
control network, which controls exogenously driven and cognitive 
demanding mental activity (Dosenbach et al., 2006, 2008; Menon and 
Uddin, 2010). Hence, we also calculated EC for the core nodes of the 
frontoparietal network, between left dorsolateral prefrontal cortex and 
left superior parietal cortex (LDLPFC - LSP), and right DLPFC and right 
SP cortex (RDLPFC - RSP); left/right DLPFC corresponded to the left/
right caudal middle frontal ROIs in the DK atlas. 

Fig. 3. On left, number of attention switch trials collected for each subject, average 38.8 ± 12 trials per subject, total 661 trials across all subjects. At center and 
right, box plot of mean and standard deviation of response times for regular on-task trials compared to post-off-task trials, illustrating the orders of magnitude 
difference between these, showing that on-to off-task disengagement clearly occurred after the attention switch trials. Box plots show median value as red line, the 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, the whiskers extend to the full range of the data, and outliers are plotted 
individually using the ’+’ marker symbol. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Further, we also investigated the rAI – ACC EC during the off-task to 
on-task switch epochs and also during regular response trials that were 
of duration <95 percentile of RTs; for the latter, 40 regular response 
trials were randomly selected per subject for a total of 680 regular 
response trials across 17 subjects in order to approximately match the 
total number of attention switch trials (661 trials) across all subjects. 

3. Results 

Here, we followed a hypothesis-driven approach focusing on activity 
and effective connectivity of the salience network. In particular, we 
tested whether there is a causal influence of the rAI over the ACC 
(rAI→ACC) within the 2 s window overlapping the putative attention 
switch events. If we find this to be the case, it would suggest that salience 
network connectivity mediated by rAI – ACC is linked with the observed 
transition in subject’s behavior from on-task to off-task periods. We 
behaviorally characterized the on-task to off-task attention switch 
events by points at which the participant stopped engaging in the self- 
paced computerized task, time-locked to subject-specific 95 percentile 
of RTs. 

First, we investigated whether there is rAI/ACC network activity 
time-locked to the putative attention switch event. In Fig. 4, we show the 
time series of rAI→ACC connectivity (left) and the power in rAI (right) 
time-locked to the attention switch event, which is represented by the 
dashed black vertical trace. The y-axes denote all the trials of all 17 
subjects, and the intensity of the colors represent the respective 
magnitude of the EC and power time series. Here, we observed that there 
was significant rAI- > ACC effective connectivity during the switch from 
on-task to off-task epochs. However, there was also considerable jitter 
within the 1 s window spanning the behavioral switch event. 

Given the jitter in the connectivity data around the behavioral 
attention-switch event, we then time-locked the EC and power data to 
the maximum of the rAI→ACC connectivity time series for each trial 
within the same 2 s attention-switch window. This time-locking to max 
EC more clearly demonstrated the rising and falling strength of the EC 
and alignment with power in rAI (Fig. 5). 

In Fig. 6, we plot the group-level trial average of the rAI→ACC 
connectivity time series (top) and rAI and ACC power (bottom). The 
inset equation models the activity of the ACC (y) as a function of rAI 
activity (x), with terms, t: time relative to rAI→ACC peak connectivity in 
msec, c: connectivity, and e: noise. We used cross-correlation to assess 
the possible causal relationship between rAI and ACC. The cross- 
correlation between these two signals was maximum when the ACC 
signal was shifted backward 150.532 msec with an R2 of 0.841, 

correlation value for this lag was 0.917 with a p-value of 6.3843e-161, 
95% CI [0.903, 0.944). Hence, best fit is observed when ACC activity 
(y) lags connectivity (c) by 150 msec. 

In Fig. 7 we show the specificity of the rAI→ACC peak connectivity 
within the attention-switch epoch. Here, we analyzed the EC time series 
statistics (across-trial mean and 5%–95% confidence interval) for other 
possibly relevant connections: left anterior insula to anterior cingulate 
cortex (lAI→ACC), left dorsolateral prefrontal cortex to left superior 
parietal cortex (LDLPFC→LSP), and right dorsolateral prefrontal cortex 
to right superior parietal cortex (RDLPFC→RSP). The rationale for 
investigating these ROI connections is provided in the Methods, Source 
effective connectivity estimation section. To calculate these EC statistics, 
we aligned each trial to the putative attention switch event, marked by 
the peak of the rAI→ACC connectivity within the behavioral attention 
switch epoch (same procedure as in Figs. 5 and 6). This was done 
because from a brain network perspective, the peak AI-ACC connectivity 
marks the putative attention switch from external to internal event 
salience, while the behavioral attention switch event is simply the last 
click/button press before the subject goes off-task behaviorally. 

In all cases, we failed to detect significant network activity time- 
locked to the peak of the rAI→ACC event within the time frame 
analyzed. These analyses serve as controls showing specificity of the 
rAI→ACC peak connectivity during the attention switch event, unde
tected in the corresponding left sided network or in the frontoparietal 
network. 

Finally, we also analyzed whether rAI→ACC peak connectivity was 
observed during the off-task to on-task switch epochs or during regular 
response trials that were not attention switch trials. In both cases, con
nectivity was analyzed in the 2 s window around these behavioral 
events. Given that there may be connectivity jitter (as observed in Fig. 4 
for on-task to off-task attention switches), connectivity on each trial was 
aligned to its peak (same procedure as in Figs. 5 and 6, now applied to 
off-task to on-task switches and regular response trials). In these two 
cases, we did not observe any consistent rAI- > ACC EC waveform 
similar to that observed in Fig. 6 (see Fig. 8). The group-level trial 
average EC trace in these two cases has the shape of a delta function. The 
sharp delta function is the consequence of averaging all the maxima i.e. 
peak connectivity across all trials, so the central point automatically gets 
reinforced, which is not anything biologically-related. These results 
show that rAI→ACC peak connectivity is not observed at least within the 
2 s epoch around the off-task to on-task switch events, or on regular 
response trials. 
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Fig. 4. Salience network connectivity (left) and power (right) dynamics time-locked to the putative attention switch event in each subject, shown for ±500 msec 
around the behavioral switch. The y-axes denote all the trials of all subjects and the intensity of the colors represent the respective magnitude of the rAI→ACC 
connectivity and rAI power time series. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4. Discussion 

Real-world attention naturally switches between on-task focus and 
off-task distractibility. Yet, common laboratory tasks that study atten
tion with set trial structures for what must be attended versus unat
tended, do not evaluate such fluctuations of attention that occurs in a 
self-paced manner. In this study, using EEG source imaging we specif
ically investigated whether self-paced switches from the on-task to off- 
task state are associated with activity and connectivity dynamics of 
the major salience network nodes, the rAI/ACC. 

We first time-locked neurophysiological data to the putative 
behavioral switch events, when response times fade from active 
responding to non-responding at the 95 percentile of response times. 
This analysis (Fig. 4) showed that effective connectivity and power in 
rAI/ACC can indeed be detected during the transition from on-task to 
off-task behavior. Yet, we found that effective connectivity observed 
between rAI/ACC is not perfectly time-locked to the behavioral event (in 
this case, the keyboard press/mouse click) that we used to identify the 
transition between states. However, this is not entirely unexpected given 
the unconstrained nature of the task wherein subjects engaged in solving 

high-school level problems at their own pace. Furthermore, our way of 
identifying the behavioral transition is intrinsically imprecise, i.e., the 
last keystrokes or clicks in a trial may have been the product of mindless 
mechanical action. Likewise, the absence of these events does not 
necessarily imply a sudden switch to a distracted state. 

Here, we discovered that during the putative behavioral switch 
epoch, when we time-lock connectivity and power data to the maximum 
of the rAI→ACC connectivity, we observe that EC in the salience 
network indeed shows a rising to falling transition across all trials and 
subjects (Fig. 5) within the 2-s vicinity of the behavioral state-transition 
from on-task to off-task state. These results indicate that information 
flows from rAI to ACC in the vicinity of the attention switch event, and 
that this flow was consistent across trials and subjects, thereby, con
firming our initial hypothesis. This interpretation is supported even 
more clearly in Fig. 6, where we observe that the peak of rAI power 
precedes the peak of ACC power by approximately 150 msec, thus 
indicating that these two regions are effectively (causally) connected. 

Classically, during externally-oriented cognitive tasks, the central- 
executive network (comprising of the dorsolateral prefrontal cortex 
and posterior parietal cortex) is active while the default-mode-network 
regions (medial prefrontal cortex, posterior cingulate cortex) are sup
pressed (Dosenbach et al., 2006, 2007; Raichle et al., 2001; Sridharan 
et al., 2008). Sridharan et al. (2008) first showed that anterior insula, 
and right AI connectivity with ACC in particular, plays a key role in 
mediating switching between the central executive control network and 
the default mode network. This work is consistent with others (Dos
enbach et al., 2006, 2007) showing that the rAI and ACC comprise a 
distinct set of brain regions that are involved in task-control across 
multiple task contexts. rAI seems to play a particularly important role in 
detecting salient behavioral events (Han et al., 2019). This may include 
both externally-generated events, as part of the ventral attention 
network (Eckert et al., 2009) as well as 
internally-generated/interoceptive cues (Menon and Uddin, 2010). rAI 
connectivity with ACC seems to be essential for switching between 
on/off (or external/internal) states and brain networks (Tang et al., 
2012). Interestingly, stronger connectivity within this rAI-ACC network 
has been observed in individuals with better performance on attentional 
tasks (Touroutoglou et al., 2012). We also recently showed that im
provements in sustained attention from a closed-loop digital meditation 
training protocol are associated with strengthened connectivity in the 
AI-ACC network (Mishra et al., 2020). Evidence further supports that the 
rAI-ACC network has clinical relevance, with disruptions in this network 
observed across a number of clinical populations associated with various 
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cognitive deficits (Uddin, 2014). 
Given the fundamental role that the salience network plays during 

any cognitive behavior, it is thus not unexpected that we found EC be
tween its core brain regions, even while measuring neural coupling on 
an unconstrained/naturalistic task. That we were able to observe and 
measure this EC with scalable EEG source imaging is very promising and 
also striking. The first direct electrophysiological evidence of connec
tivity from AI to dorsomedial prefrontal cortex (dmPFC) that encom
passes the ACC was shown only recently, using invasive electrodes 
implanted within AI and dmPFC (Bastin et al., 2017). Recent efforts have 
estimated functional connectivity within the salience network in 
source-space (using LORETA) similar to our efforts in this paper 
(Imperatori et al., 2020; Massullo et al., 2020), though these previous 
studies have measured effective connectivity during resting state, and 
not dynamically within a task context. We note that here we uniquely 
show evidence for dynamic rAI→ACC coupling in the vicinity of 
behavioral attention state switches from on-task to off-task state. We 
further show the specificity of this peak coupling during these behav
ioral attention switch epochs. Peak connectivity of right AI→ACC during 
the attention switch epochs was not observed to correspond to signifi
cant network connectivity for left AI→ACC showing the 

right-lateralization of the connectivity finding, or any significant con
nectivity in the left/right frontoparietal brain regions suggesting the 
salience network specificity. Other researchers have shown causal re
lationships between salience network and frontoparietal network con
nectivity in specialized cases such as for divided attention across spatial 
locations and sensory modalities (Santangelo, 2018), which was not 
required for our task. Additionally, we showed that the right AI→ACC 
peak coupling was not observed within the 2-s epoch around the off-task 
to on-task response events, or for regular response trials. The null result 
for regular response trials is expected, given that attention is not 
switching between external vs. internal salience during these trials. The 
null result for off-task to on-task switch trials could be because this 
putative switch is neurally occurring much earlier than 1-s prior to the 
behavioral response event, but it was not within our scope to stretch 
analytics to much longer time windows. 

The present work is limited in that we did not resolve the subjects’ 
behavior beyond active keystrokes and mouse-clicks to represent task- 
engagement, i.e. we do not have a handle on performance accuracy or 
on difficulty of individual questions, which was automated and repre
sents adaptively increasing cognitive load. Future work is needed to 
resolve these task performance nuances, especially since the anterior 
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cingulate node of the salience network is involved in error processing 
(Botvinick et al., 2004; Hyman et al., 2017; van Veen and Carter, 2002). 
We also acknowledge the limitation that we do not know the content of 
the mental activity during the off-task period. Also since the precise 
timing of the mental switch is uncertain, we may need to use more so
phisticated methods to better determine the involvement of the fronto
parietal attention network leading to, during, and after the switch, and 
also stretch the time windows for analyses to find salience network 
switches from off-to on-task state. For instance, future work may 
consider using micro-states connectivity analysis (Duc and Lee, 2019) to 
discover more complex network dynamics at the whole cortical scale. 

Taken together with recent EEG-based AI/ACC connectivity studies, 
our work here suggests that EEG may be a cost-effective approach for 
measuring effective connectivity within the salience network both at 
rest and during task contexts. Measuring this at scale (in larger samples, 
in various psychiatric disorders), may provide a novel platform for 
identifying links between the functioning of this network and large-scale 
cognitive and behavioral difficulties. Taken as a whole, the results 
contribute to the understanding of brain connectivity that supports 
cognition and behavior. Future closed-loop experiments (Mishra et al., 
2016, 2021) will be necessary to show if rAI→ACC network activity is 
indeed causal to attention switching. For instance, a source 
imaging-based brain computer interface (BCI) that monitors the rAI
→ACC coupling and the power in rAI, and alerts when both increase 
significantly above threshold, may be useful for averting attention 
switches to the distracted state. 
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