
Image Captioning using an LSTM Network

Keshav Rungta
Dept. of Electrical & Computer Engineering

University of California, San Diego
San Diego, CA 92092
krungta@ucsd.edu

Geeling Chau
Dept. of Electrical & Computer Engineering

University of California, San Diego
San Diego, CA 92092
gchau@ucsd.edu

Anshuman Dewangan
Dept. of Computer Science

University of California, San Diego
San Diego, CA 92092

adewanga@ucsd.edu

Margot Wagner
Dept. of Bioengineering

University of California, San Diego
San Diego, CA 92092
mwagner@ucsd.edu

Jin-Long Huang
Dept. of Physics

University of California, San Diego
San Diego, CA 92092
jih002@ucsd.edu

Abstract

Image comprehension is becoming an increasingly important task in today’s world
as the need to use large sets of images to answer questions about them becomes
more pertinent. A first step in that direction, in this paper we try and label a set
of images in the COCO dataset using a pre-trained ResNet 50 model (trained on
ImageNet) to extract and encode the features of the images and an LSTM network
as a decoder to generate the caption one word as a time. Our baseline model
using an LSTM with a learning rate of 5e-4, embedding size of 300, and hidden
size of 512 achieved a test loss of 1.796, BLEU-1 score of 53.471, and BLEU-4
score of 13.988. We experimented with variations to the model, including using a
Vanilla RNN, using stochastic caption generation with different temperatures, and
varying the learning rate, embedding size, and hidden size. Our best model used
an LSTM with learning rate of 5e-5, embedding size of 800, hidden size of 2048
and deterministic generation, and achieved a test loss of 1.729, a BLEU-1 score of
61.172, and a BLEU-4 score of 18.711, demonstrating that LSTMs can produce
successful results for Automatic Image Annotation (AIA).

1 Introduction

With the explosion of data during the big data revolution, visual data in the form of images is no
exception. A particular problem is image retrieval in the same way text documents are received.
In order to approach this problem, images need to be annotated for their semantic contents. These
semantic contents then allow us to gather and answer additional question about the images leading
to better image comprehension. Typically, this is done manually, which is both impractical and sub-
jective by nature necessitating an automatic alternative. Thus, significant research efforts have been
focused on this issue of Automatic Image Annotation (AIA). Uses for AIA include image retrieval,
scalable mobile image retrieval, facial recognition, facial landmark annotation and photo tourism
as well as uses in numerous fields of study including urban management, biomedical engineering,

1



social media services, and tourism [1]. The overall goal is to bridge the semantic gap between the
low-level image features and a higher level understanding of contexts as well as providing useful
keyword searching based on image content.

Here we focus on a deep learning AIA methodology, which exists as one of five general categories
of models. The others being generative model-based methods, nearest neighbor model-based meth-
ods, discriminative model-based methods, and tag completion-based methods. Deep learning-based
AIA is summarized by the combination of visual feature extraction or generation through convo-
lution neural networks (CNN) for image annotation followed by further deep learning techniques
for semantic generation often in the form of sequence models. Deep learning provides an effective
AIA technique for large datasets where longer training times are acceptable [1]. That being said,
there are challenges associated with deep learning techniques including local optimum and difficulty
converging as well as lack of interpretability [2].

In this work, we create a deep learning network for automatic image captioning. The baseline model
is built as an encoder-decoder system where the encoder is a pre-trained ResNet50 CNN which
produces features that are then fed through a linear layer to a long short term memory (LSTM)
recurrent neural network (RNN) that can handle data with a temporal structure. This model takes
in an input images and produces a caption as a list of strings. We also compared the performance
of the LSTM to a vanilla RNN model. For the different models we have we compare stochastic
and deterministic methods of caption generation in order to see which one provides us with better
BLEU scores. In order to train and evaluate our models, we use the COCO dataset, which contains
manually annotated images. This allows us to tune the hyperparameters for our models including
the embedding size and hidden size for generally better results.

2 Related Works

Natural Language Processing as a genre of problems is forever growing to encompass a more varied
set of applications ranging from text translation to text generation. One of the more recent set
of solutions in the domain is the usage of Recurrent Neural Networks (RNNs) [3]. RNNs in the
modern world have been adapted for numerous problems related to sequential data and generation
of sequential output.

However, with the need for models to be able to save its state for longer periods of time, came
the inception of Long Short Term Memory (LSTMs) [4]. These provided solutions to problems
for numerous problems like recognising handwriting, generating music etc. In this paper, we use
LSTMs to caption images and to that effect, we used Andrej Karpathy’s blog on RNNs [5] and this
blog post that gave us more insight into time series data and how to process them [6]. However,
more modern techniques use Transformer networks but we do not use them in this paper.

In order to train and test this network we used the COCO dataset [7] which is one of the largest
datasets of its kind. Although not with full captions for images, there are numerous other image
based datasets that provide semantic information that can be used in numerous other applications
like Kitti [8] which is one of the largest driving based dataset, or CityScapes [9] which contains
semantic segmentations of the different classes, or even ImageNet [10] which was used to train
our ResNet50 model [11], as it is the largest image based dataset that we know with over 1000
classes labelled on it. We used PyTorch’s implementation for ResNet50, LSTMs, and Embedding
to implement many of the critical parts for this paper [12].

In this paper, we used Cross Entropy Loss to train our model, and the BLEU metrics [13] to quantify
the quality of our captions. BLEU is one of the first metrics to have high correlation with human
judgement and remains to be one of the most popular metrics. For a brief introduction to BLEU, we
followed the blog [14]. Natural Language Toolkit(nltk) python package was used to calculate BLEU
[15]. They implemented both modified n-gram precision and brevity penalty factor. To make sure
we don’t get abnormal BLEU scores, we compare our results to two most influential papers [16, 17].
We achieved around 60 for BLEU-1 and around 20 for BLEU-4, which are just a few percentages
lower than what they accomplished.

2



Figure 1: Some sample images in the MS-COCO dataset and their corresponding labels

3 Methods

In this section we go into more details about the various aspects of our project: the dataset, the
baseline model, a vanilla RNN model and the improvements we implemented to try and improve
our metrics.

3.1 COCO Dataset

For this work, we are using the Common Objects in Context (COCO) [7] 2015 Image Captioning
Task dataset. COCO datasets are presented by Microsoft for use in state-of-the-art object recognition
tasks including object detection, segmentation, and captioning. The images are complex common
daily scenes containing common objects in their natural context with the goal of better understanding
scene context at depth. Specifically, we use the 2015 dataset oriented towards the task of image
captioning. Thus, the dataset contains images as well as captions describing the primary contents of
the images.

For this assignment, we use approximately 20% of the original dataset. The training set contains
around 82k images and 410k caption, and the test set contains 3k images and nearly 15k captions.
The train, test, validation split was also used as provided for hyper-parameter tuning.

We can see in the sample images and the labels in Fig. 1, both the image and the corresponding label
is of size 1080×1920×3. The images were preprocessed to make our model more memory efficient
which allowed us to increase the batch size. In the provided preprocessing code, the images were
cropped to a size of 256×256×3 and the captions were padded and adjusted to include a start and
end flag in order to signal to the model how a sequence started and ended.

3.2 Baseline Model

The simple idea to summarise this project is that our model would receive an image and should
output a caption for that image after learning the semantic information about it. As such, this task
is highly suited to a sequence model. Recurrent neural networks (RNNs) are a type of sequential
model specialized to process, or in this case produce, a sequence of values x(0), ..., x(t) [18]. Here,
those values are words.

The baseline model for our image caption generation task utilizes an encoder-decoder architecture
where the encoder receives image inputs and encodes them into feature vectors. These feature
vectors are then passed through a linear layer before finally entering the decoder to generate the
image caption. In the baseline, we use a pre-trained convolutional neural network (CNN) as the
encoder and an LSTM model as the decoder. Both the linear layer in the encoder and the decoder
are trained using back-propagation of error, more specifically the Cross Entropy Loss that we have
been using all this while.

3



Figure 2: Baseline encoder-decoder architecture using a pretrained ResNet-50 convolutional neural
network encoder and long short term memory model decoder

The CNN encoder uses the ResNet50 CNN pretrained on the ImageNet dataset with the last layer, the
fully-connected classifer layer, replaced by a trainable linear layer that outputs a vector of features
with a tunable fixed size for the input image. The linear layer transforms the image feature vector
to a tunable embedding size the same size as the captions after they are embedded so that they can
both be inputted into the decoder at the input.

In addition to obtaining the image as a feature vector of embedding size, we also need to obtain the
caption words into a similar structure. This process of embedding the captions utilizes Pytorch’s
Embedding layer which is able to output a feature vector for each word in the caption initialized to
our vocabulary data structure. These embeddings can then be fed into our decoder in addition to the
feature vector from our image.

The baseline decoder utilizes an LSTM network which is trained using teacher forcing. Teacher
forcing functions by using the input at a given step as the teaching signal from the training data
at previous step, x(t) = target(t-1). Often, models function by using the output from the last time
step, y(t-1), as the input at the current time step x(t), but this can lead to problems such as slow
convergence, model instability, or poor performance which teacher forcing works to address [19].

In order to implement teacher forcing, the first timestep receives the encoded image as well as
a ’<start>’ flag as input. The training caption is fed word by word until the ’<end >’ flag is
reached. The words are first one-hot encoded based on the list of used vocabulary and convert to a
lower dimensional embedding through a fully connected layer which is trained by backpropagation.
Lastly, there is a fully connected layer from the hidden states to the one-hot encoded output.

To create the one-hot encoding, a vocabulary data structure is created mapping a word to a given
index. This allows the model to convert between word captions and one-hot encodings with ease.

To implement the LSTM, we used PyTorch’s built-in LSTM capability which has three inputs: the
current feature, the cell state (ct), and the hidden state (ht). To begin, the <start>token embedding
is input to the first LSTM cell as x(0). The hidden states of the cell, both h0 and c0 are initialized
from the image embedding produced by the encoder. The output is the next word in the caption in
the training step. In the generation step, the model predicts the next word which is fed into the next
LSTM cell as the input. In the baseline model, this is done deterministically where the value is taken
as the output with the highest likelihood at each step.

For training, we used Cross Entropy Loss and the encoder and decoder were trained jointly. Training
was conducted for 10 epochs (unless otherwise noted) and leveraged early stopping to evaluate the
model in the lowest validation loss on the test set.

4



3.3 Model Variations

3.3.1 Vanilla RNN

To compare the function of the LSTM, we additionally implemented a basic RNN model (vanilla
RNN). Compared to the LSTM, typical RNNs suffer from vanishing and exploding gradient prob-
lems. LSTMs have additional memory cells which are non-existent in the vanilla RNNs. The expec-
tation is that the vanilla RNN should not achieve as high performance as the LSTM. In this paper,
we used the default PyTorch implementation of RNN in order to do this. The rest of the set up is the
exact same.

3.3.2 Stochastic Caption Generation

While generating captions, the network functions by predicting the next word in the sentence and
using the prediction as the next input. In the baseline model, this was implemented deterministically
where we used the highest likelihood of each word as the prediction for that step. Alternatively,
the selection can be implemented stochastically. In our model, this was done by sampling from the
probability distribution that is the weighted softmax of the output according to:

yj =
exp(oj/τ)∑
n exp(o

n/τ)
(1)

In this equation, oj is the last layer’s output, n is the vocabulary size, and τ is the ”temperature,”
which varies how stochastic the sampling strategy is with values approaching zero leading to a ap-
proximately deterministic solution compared to large temperature values resulting in a more uniform
distribution. This stochastic method of prediction does not affect the training of the model, as this
only changes the words that are selected but not the probability of the words which is what was used
to train the model.

3.3.3 Hyperparameter Tuning

To tune our hyperparameters, we systematically began with experimenting with learning rate. High
learning rates can cause instability in how the model learns as demonstrated by a validation loss
curve with lots of variability. Too low learning rates result in models that train very slowly. With
feedback on how the loss graphs for training and validation runs, we saw that 5e-4 began overfitting
too quickly, suggesting that 5e-5 would have a better opportunity for training to a lower test loss.
5e-6 and smaller trained too slowly, so to restrict to 10 epochs, we selected 5e-5 as our best learning
rate.

We also experimented with different embedding and hidden sizes. The embedding size determines
the final number of features that the original vocabulary of text is mapped to. High embedding sizes
can provide a richer representation of the textual data. The hidden size refers to the number of nodes
in the hidden layer. A higher hidden size allows the model to learn more complex representations
of the data. As we increased embedding and hidden size, our model performance improved; thus,
our best model used the highest embedding and hidden sizes we experimented with (800 and 2048,
respectively). More details can be found in Section 4.

3.4 Metrics

We saw in the last couple of assignments that proper initialisation of weights has a huge impact
on the performance of the network. This is because poor initialization can cause the weights to
either explode or the gradients to vanish both of which are detrimental. In our models, we utilized
Xavier weight initialization [20]. This strategy initializes weights by sampling a random uniform
distribution bounded by

±
√
6√

ni + ni+1
(2)

5



where ni is the number of connections into a given layer and ni+1 is the number of connections
outgoing from a layer. This is to avoid the problem of vanishing gradients for early layers when the
fan-in size is large. When it was discovered, it was found to maintain gradient variances across all
layers of the network leading to faster convergence and better accuracy.

In order to measure the caption equivalency, we used BLEU-1 and BLEU-4 metrics to evaluate
our models in addition to Cross Entropy Loss. The BLEU metric compares a candidate translation
against multiple reference translations. It is based on the previous precision measure, which is the
ratio of number of words (unigrams) in prediction appeared in any reference sentences, to total
number words in prediction. This simple precision measure can easily lead to generate too many
“reasonable” words, like ”the the the the the the the”, while keeping high precision. To rectify this,
BLEU first counts the maximal number of a word occurred in any single reference, and then clips
total occurrence of this word in prediction by the maximal reference count, and divides it by the
total (unclipped) number of prediction words. See the original paper [13] for some examples. For
all n-gram precision, this modification can be made.

The shorter n-gram matches accounts for word adequacy, and the longer n-gram contributes to
fluency. It’s been tested that using maximum n-gram of order 4 gives best results. Since we want
both adequacy and fluency, BLUE-n uses equal weights of k-grams for k = 1, 2, · · · , n. So in
our implementation, we use weight vector (1, 0, 0, 0) for BLUE-1, and (0.25, 0.25, 0.25, 0.25) for
BLEU-4.

The described way to calculate precision penalizes long sentences, but it doesn’t penalizes short
sentences. For example, the model can learn to produce a single word sentence ”the” to get max-
imum BLEU-1=100%. To get a similar length as the target sentence, BLEU further multiplies a
brevity penalty factor in front of weighted n-gram score. All of this was done in the nltk package we
imported. In our calculation of BLEU scores for each image, we used all 5 actual captions, along
with one predication caption.

4 Results & Discussion

Table. 1 records our test results for all the experiments we conducted. In each of the sections below,
we further unpack the results and corresponding implications.

4.1 Baseline Model

(a) Training Loss (b) Validation Loss

Figure 3: Varying learning rate for LSTM model with embedding size of 300 and hidden size of
512. (a) Training loss. (b) Validation loss. (Legend) Blue: 5e-6. Yellow: 5e-5. Red: 5e-4.

After varying the learning rate, our best baseline model use a learning rate of 5e-5, embedding size
of 300, and hidden size of 512 to achieve a test loss of 1.923, BLEU-1 score of 58.824, and BLEU-4
score of 17.197. Fig. 3 demonstrates that the training and validation loss curves across the three
learning rates we experimented with (5e-4, 5e-5, 5e-6) are well-behaved, decreasing with relative
stability over time. We recognized that the validation loss using learning rate of 5e-4 overfit the data
within 5 epochs, while a learning rate of 5e-6 trained too slowly, which is why we chose a learning
rate of 5e-5 to move forward with for the other experiments.

6



Value Test Loss BLEU-1 BLEU-4
Learning Rate

5e-4 1.796 53.471 13.988
5e-5 1.923 58.824 17.197
5e-6 2.922 36.696 4.964

Longer Training
5e-5 (60 epoch) 1.850 59.313 17.195
5e-6 (50 epoch) 2.172 55.355 14.092

Vanilla RNN
Vanilla + 5e-5 1.958 55.298 14.475

Temperature (Stochastic)
0.01 NA 58.813 17.194
0.05 NA 58.819 17.202
0.1 NA 58.859 17.190
0.2 NA 58.581 16.739
0.7 NA 51.815 11.237
1 NA 40.465 6.457

1.5 NA 14.835 1.898
2 NA 5.322 0.765

Embedding Size
100 + 5e-5 2.025 57.603 16.127
500 + 5e-5 1.889 58.920 16.734
800 + 5e-5 1.844 58.626 16.991

Hidden Size
256 + 5e-5 2.124 53.478 12.789
1024 + 5e-5 1.808 60.869 18.428
2048 + 5e-5 1.780 60.487 18.046

Best Model
2048H + 800em + 5e-5 1.729 61.172 18.711

Table 1: Model results on 10 epochs per experiment. First we experimented with learning rate to
find that 5e-5 had the most potential since 5e-4 quickly began overfitting within 10 epochs. Testing
our 5e-5 baseline model with a stochastic caption choice, we achieved highest BLEU results with
lower temperatures. Increasing embedding size also gave us a lower test loss, as well as increased
hidden size. Thus, we hypothesized that a large hidden and embedding size will produce the best
model, which was indeed the case.

(a) Training Loss (b) Validation Loss

Figure 4: Varying learning rate for LSTM model with embedding size of 300 and hidden size of
512, trained for 50+ epochs. (a) Training loss. (b) Validation loss. (Legend) Blue: 5e-6. Yellow:
5e-5.

Since 10 epochs did not seem to be long enough for learning rates of 5e-5 and 5e-6 to achieve
minimal validation loss, we trained the models on a separate run for 60 and 50 epochs, respectively.

7



Fig. 4 demonstrates that a learning rate of 5e-5 begins overfitting around 20 epochs, while a learning
rate of 5e-6 still underfits after 50 epochs. This suggests that a learning rate of 5e-6 is impractical to
train due to its long training times.

4.2 LSTM vs. Vanilla RNN

(a) Training Loss (b) Validation Loss

Figure 5: Varying model type with learning rate of 5e-5, embedding size of 300, and hidden size of
512. (a) Training loss. (b) Validation loss. (Legend) Yellow: LSTM. Green: Vanilla RNN.

Using the learning rate of 5e-5 that we found above, we next compared the performance of the LSTM
with a vanilla RNN, leaving the other parameters unchanged. The Vanilla RNN achieved a test loss
of 1.958 (higher than LSTM, 1.923), BLEU-1 score of 55.298 (lower than LSTM, 58.824), and
BLEU-4 score of 14.475 (lower than LSTM, 17.197). Overall, the performance of the two models
were relatively comparable. From the loss curves, we notice that the LSTM loss starts higher than
that of Vanilla RNN, but after 5 epochs becomes lower than the Vanilla RNN loss. We also notice
that the BLEU scores for the Vanilla RNN model are lower than those of the LSTM.

In summary, these results suggest that the Vanilla RNN needs less epochs to achieve satisfactory
performance, but the LSTM model would outperform in the long run. This aligns with our intuition;
the LSTM model builds upon the RNN model by introducing a cell state that can encapsulate longer
term information. While this allows the model to perform better in the long run once it has learned
the right representations to ”remember,” it performs worse than the simpler RNN for early training
epochs.

4.3 Deterministic vs. Stochastic Caption Generation

Temperature (Stochastic)
Value BLEU-1 BLEU-4
0.01 58.813 17.194
0.05 58.819 17.202
0.1 58.859 17.190
0.2 58.581 16.739
0.7 51.815 11.237
1 40.465 6.457

1.5 14.835 1.898
2 5.322 0.765

Table 2: BLEU-1 and BLEU-4 scores when varying temperature for stochastic generation using
LSTM model with learning rate of 5e-5, embedding size of 300, and hidden size of 512.

For our next experiment, we compared deterministic caption generation with stochastic caption gen-
eration at various temperatures. We observed that stochastic caption generation with a temperature
of 0.1 performed marginally better than deterministic caption generation, with a BLEU-1 score of
58.859 (higher than deterministic, 58.824) and a BLEU-4 score of 17.190 (slightly lower than deter-
ministic, 17.197). At temperatures 0.2 and lower, stochastic generation performance is comparable

8



to that of deterministic generation. However, at higher temperatures, performance steeply drops
off. This aligns with our intuition; higher temperatures represent a more uniform distribution of
the selection of words. Lower temperatures resemble the deterministic case. Consequently, as the
temperature grows vastly, the captions become non-sensical and the model performance decreases
drastically.

4.4 Varying Embedding & Hidden Size

(a) Training Loss (b) Validation Loss

Figure 6: Varying embedding size of LSTM model with learning rate of 5e-5 and hidden size of
512. (a) Training loss. (b) Validation loss. (Legend) Yellow: 100. Orange: 300. Purple: 500. Blue:
800.

We then experimented with different embedding sizes. The best performing model used an embed-
ding size of 800, with a test loss of 1.844 (lower than baseline, 1.923), BLEU-1 score of 58.626
(higher than baseline, 58.824), and BLEU-4 score of 16.991 (higher than baseline, 17.197). In gen-
eral, as the embedding size increased, the model performance increased as well. This is because
higher embedding sizes allow for a more rich representation of the textual data, which improves
performance while our model is underfitting, demonstrated by the still-decreasing validation loss
curves.

(a) Training Loss (b) Validation Loss

Figure 7: Varying hidden size of LSTM model with learning rate of 5e-5 and embedding size of
300. (a) Training loss. (b) Validation loss. (Legend) Blue: 256. Orange: 512. Green: 1024. Red:
2048.

Similarly, we experimented with different hidden sizes. The best performing model used an hidden
size of 2048, with a test loss of 1.780 (lower than baseline, 1.923), BLEU-1 score of 60.487 (higher
than baseline, 58.824), and BLEU-4 score of 18.046 (higher than baseline, 17.197). Similar to
embedding size, as hidden size increased, the model performance increased as well. Higher hidden
sizes allow for more complex learned representations and improves performance while the model is
underfitting.

9



(a) Training Loss (b) Validation Loss

Figure 8: Performance of best model (learning rate of 5e-5, embedding size of 800, hidden size of
2048) vs. absolute baseline (learning rate of 5e-4, embedding size of 300, hidden size of 512). (a)
Training loss. (b) Validation loss. (Legend) Pink: Baseline. Orange: Best model.

4.5 Best Model

Based on the experiments above, we defined our best model by picking the parameters that resulted
in the lowest validation loss while maintaining high BLEU scores. With a learning rate of 5e-5, em-
bedding size of 800, and hidden size of 2048 with deterministic generation, the best model achieved
a test loss of 1.729 (lower than absolute baseline, 1.796), a BLEU-1 score of 61.172 (higher than ab-
solute baseline, 53.471), and a BLEU-4 score of 18.711 (higher than the absolute baseline, 13.988).
With deeper representations of the data and a well-tuned learning rate that optimizes training speed
against loss variability, our best model vastly outperforms the absolute baseline Figure 8.

Of this best mode, we have plotted 5 good predicted caption examples in Figure 9 and 5 bad pre-
diction caption examples in Figure 10.

We can see that the model does pretty well when the things that need to be identified are easily
generalizable, e.g. identifying everyday items and the concept of a person. In the good sample, we
clearly see that certain salient objects or people can be identified quite accurately. In identifying
objects, common context for the types of objects seem to help it be more accurate. In identifying
people, salient features of people such as faces being in the image or the people are easily identified.
Even with image distortion, if the object is easily generalizable, the model is able to identify the
salient objects. These results are consistent with the fact that we used a pretrained ResNet model
which was trained to identify objects in an image to encode our image features.

However, when there are more minute details that the model needs to pick up on, it is not able to
perform as well. The model mistakes a running dog for a horse, is not able to see the precise contents
of sandwiches, is not able to distinguish a face of a woman from a child, and cannot identify cats
simply from their tail. In Figure 10c, we can see that the model attempts to piece together the context
but assembles something that is not consistent with the image, saying that there is a couple on the
table rather than a couple of cups of ice cream. In most of these mistakes, we can see how the model
might be conflating contextual clues with actual details in the image. With the dog and sandwich,
it appears that the grass and sandwich existence is enough for the model to think that the animal is
a horse or the sandwich comes with pickles, when it in fact does not. Perhaps in the training set,
the ResNet encoder primarily saw running horses and sandwiches with pickles. Similarly, with the
people mistakes, the harry potter child may look like a woman facially, but due to the existence of a
tie, the model gives the person a beard as well. With the cut off cat image, we can see that the pillow
makes it likely the model thinks it is a bed, and since it is more likely for a bed to have a blanket than
a cat, it predicts that there is a blanket rather than a cat. These mistakes can primarily be explained
by a bias in the original ResNet50 training dataset where these contexts will cause some predictions
to be more likely.

10



(a) Actual captions:
- a desk with a laptop and extra keyboard on it
- a laptop computer on a cluttered desk connected to an
external mouse and keyboard.
- the laptop is connected to a full size keyboard to make
an effective work station.
- a laptop is set up at an office station.
- a laptop sits precariously on a desk, with a second
keyboard in front of it, and windows behind it.
Predicted caption:
- a desk with a laptop computer and a keyboard

(b) Actual captions:
- a bathroom with a toilet and a sink and a bath tub
- a bathroom with sink, tub and toilet black and
white
- a bath room with a bath tub a sink and a toilet
this bathroom has a sink, toilet, bathtub, and shower.
- a small bathroom has a white tub, sink and toilet
with a wooden lid.
Predicted caption:
- a bathroom with a sink and a toilet in it

(c) Actual captions:
- a happy woman about to eat a slice of pizza.
- a woman smiles as she holds a plate of food
- an asian woman smiles as she received pizza
- woman smiling receiving a plate with a slice of
pizza.
- the older woman smiles as she holds a plate with
a slice of pizza.
Predicted caption:
- a woman is eating a piece of pizza.

(d) Actual captions:
- a man and a woman are in the snow with helmets.
- a man with his arm around a woman in front of several
skiers.
- two people posing for a photo with young people in
the background wearing skis
- a man and a woman wearing eye protection and coats
stands in the snow near a couple of skiers.
- a couple embracing on a snow covered ski slope.
Predicted caption:
- a couple of people that are standing in the snow.

(e) Actual captions:
- a tall building with a large white statue.
- a statue of a man standing in front of a building
- a fish-eye view of a statue in front of a columned building.
- a stylized photo of a statue in front of a building.
- a statue standing in front of a building shot with a fish-eye lens.
Predicted caption:
- a building with a clock on the side of it.

Figure 9: Best model: Good caption predictions vs actual

11



(a) Actual captions:
- a dog running towards a frisbee in the air
- a dog running towards a frisbee on some grass and
leaves.
- a tan dog running in the grass after a frisbee
- a person is in the distance while a brown dog is in
midair and is running after a frisbee.
- a brown dog chasing a frisbee in a field
Predicted caption:
- a person is riding a horse in the grass.

(b) Actual captions:
- a plate with a breakfast sandwich, eggs and a fork
next to two coffee mugs.
- a sandwich with scrambles eggs on a white plate.
- a plate with a breakfast sandwhich and some other
food along with 2 mugs
- a breakfast sandwich sits on a plate with a fork in
front of two cups
-scrambled egg and bacon on a biscuit at home
Predicted caption:
- a sandwich with a pickle and a pickle on it.

(c) Actual captions:
- two cups of ice cream sitting on a table in front of a
woman with whipped cream and a cherry on top.
- the woman sits in front of two ice cream sundaes.
- a lady sitting at a table with two sundaes in front of her.
- a woman sitting next to a table with desserts in front of
her face
- a woman is sitting in front of some ice cream on a table
Predicted caption:
- a couple of people that are sitting on a table.

(d) Actual captions:
- a little boy dressed up in a ”harry potter” costume.
- a young boy wearing glasses and a neck tie.
- a boy dressed in a harry potter type outfit in a room.
- a little boy in a suit wear eye glasses
- a young boy in harry potter round glasses and tie.
Predicted caption:
- a woman with a beard and a tie.

(e) Actual captions:
- a cat looks off the edge of a made up bed that has blue pillows and a floral pillow.
- there is a black cat sitting on the edge of the bed
- a bed has a brown cover, blue pillows and a floral decorative pillow and a black cat sits on the edge.
- a black cat seated on the edge of a neatly made bed
- a cat sitting on a neatly made bed
Predicted caption:
- a bed with a blanket on the floor and a blanket on it.

Figure 10: Best model: Bad caption predictions vs actual

12



5 Conclusion

We were successful in implementing an LSTM to solve the problem of Automatic Image Annota-
tion (AIA), with a test loss of 1.729, a BLEU-1 score of 61.172, and a BLEU-4 score of 18.711.
Fine-tuning our learning rate and increasing the embedding and hidden sizes improved the perfor-
mance of our model. As expected, the LSTM outerperformed the simpler Vanilla RNN model and
stochastic caption generation resulted in similar performance to deterministic caption generation for
low temperature values. For future work, we can consider to add attention mechanisms and model
the textual data using transformers.

6 References

[1] Qimin Cheng, Qian Zhang, Peng Fu, Conghuan Tu, and Sen Li. A survey and analysis on
automatic image annotation. Pattern Recognition, 79:242–259, 2018.

[2] Dengsheng Zhang, Md. Monirul Islam, and Guojun Lu. A review on automatic image annota-
tion techniques. Pattern Recognition, 45(1):346–362, 2012.

[3] Ilya Sutskever and Geoffrey Hinton. Temporal-kernel recurrent neural networks. Neural Net-
works, 23(2):239–243, Mar 2010.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997.

[5] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks, May 2015.

[6] Roman Orac. Lstm for time series prediction, Sep 2019.

[7] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[8] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Ro-
drigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[10] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[13] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

[14] Jason Brownlee. A gentle introduction to calculating the bleu score for text in python, 2017.

[15] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: ana-
lyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[16] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks

13



for visual recognition and description. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2625–2634, 2015.

[17] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neu-
ral image caption generator. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3156–3164, 2015.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[19] Jason Brownlee. What is teacher forcing for recurrent neural networks?, 2017.
[20] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

14

http://www.deeplearningbook.org

	Introduction
	Related Works
	Methods
	COCO Dataset
	Baseline Model
	Model Variations
	Vanilla RNN
	Stochastic Caption Generation
	Hyperparameter Tuning

	Metrics

	Results & Discussion
	Baseline Model
	LSTM vs. Vanilla RNN
	Deterministic vs. Stochastic Caption Generation
	Varying Embedding & Hidden Size
	Best Model

	Conclusion
	References

