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.Here we analyze the California Statewide Integrated Tra�c Records Sys-
tem dataset from January 1, 2001 to mid-October 2020 and use it to predict
collision severity. This prediction task was chosen as it is useful to inform
which safety measures to take to reduce collision fatalities. From the dataset,
we selected a variety of features to classify between collision severity rang-
ing from property damage only to injury to fatal. We compared Logistic
Regression, Decision Tree and Naive Bayes models of classi�cation. The best
performance was achieved using the Logistic Regression with the inclusion
of victim data to get a balanced accuracy of 66.25%. The most important
features of the ones evaluated were whether the collision was a hit and run
misdemeanor, whether towing was required, and whether is was a rear-end
collision.
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1 DATASET INTRODUCTION
For this work, we focus on the State of California’s Statewide Inte-
grated Tra�c Records System (SWITRS) from January 1, 2001 to
mid-October 2020, which contains detailed reports of vehicle colli-
sion data in California. The speci�c database is an SQLite database
available on Kaggle, built by Alex Gude [4]. The data is extensive,
containing 9.46 million rows at 5.78 GB total.

Fig. 1. Plot of geographical location of each collision

The dataset consists of four tables: "caseids", which contains the
case ID and year of collision; "collisions", which contains 74 columns
of collision information including location, time, severity, and en-
vironmental factors; "parties", which contains 31 columns of de-
mographic information for all parties involved as well as vehicle
information, sobriety, and other details; and "victims", which con-
tains 11 columns of victim-speci�c demographic information and
injury information.

Looking at the number of collisions in each category of collision
severity, we see there is a lot more collisions that are of severity
property damage only (PDO) or injury than fatal. It is important to

keep in mind that, with regards to collision severity, the dataset is
unbalanced.

Fig. 2. Frequency of collisions of each severity type.

The primary task of exploratory analysis was to look into spe-
ci�c features of the data in order to motivate feature selection and
engineering for the prediction task moving forward. A key compo-
nent of this was comparing distributions of frequencies for certain
features across the label categories. If the distribution of features
changed markedly between the categories, it would likely act as a
good feature for a categorical predictor.
For example, looking at the type of collision for each severity

type (�gure 3), fatal collision are most likely to be due to a hit
object at 22.1% while both the property damage only and injury
categories are most likely due to a rear end. Even still, we see a
di�erent distribution with a PDO being due to a rear end 47.3%
of the time, but only 37.8% for injury. Additionally, the second
most common type of collision for PDO is sideswipe while for both
injuries and fatal collisions, it is broadside, suggesting broadside
collisions are more dangerous than sideswipe. As the severity of the
collision increases, we see an increasing percentage of hit object,
head-on, pedestrian, and overturned collisions while rear end, and
sideswipe collisions decrease (�gure 4). Interestingly, the number
of broadswipe collisions is at a maximum for injuries but then
decreases again for the fatal severity case. Overall, the change in
distribution of type of collision indicates that it could be a key
feature in determining collision severity.

Another feature that changes across collision severity conditions
is whether or not towing was required for the accident. As the
severity of the collision increases, the percentage of collisions that
required towing also increases, which matches with intuition (�gure



Fig. 3. Percentage of di�erent types of collisions according to collision
severity type.

Fig. 4. Change in percentage of collision types as collision severity increases.

5 and 6). We see a dramatic increase for requiring towing from 43.5%
to 91.5%. There stark di�erence in towing conditions paired with
a continual increase in the need for towing as severity increases
indicates that towing would act as a useful feature for collision
severity classi�cation.

Fig. 5. Percentage of collisions that required towing according to collision
severity type.

The lighting conditions at the time of collision also changemarkedly
across severity levels. The percentage of collisions occurring in the
daylight drops signi�cantly if the collision is fatal while the per-
centage of collisions occurring in darkness with no street lights
increases signi�cantly (�gure 7, 8). The percentage of dark with

Fig. 6. Change in percentage of collisions requiring towing as collision
severity increases.

street lights increases slightly as severity increases, but not as much
as with no street lights, suggesting the important role street lights
may play in collision fatality.

Fig. 7. Percentage of di�erent lighting conditions according to collision
severity type.

Some features which would intuitively seem to have a strong
e�ect on determining collision severity do not appear to change
signi�cantly. The weather conditions appear mostly constant, with
clear conditions remaining a strong majority across all collision
severity types and all conditions remaining constant. This suggests
it may not be as strong of a feature for predicting collision severity
as type of collision, tow away, or lighting.
In the table in Figure 11, we have summarized the condition

that makes up the majority percentage for each feature of interest
across the severity conditions, excluding at-fault driver and victim
age, which are described as average ages. Similar analysis above
was done with each feature and related �gures are included in the
appendix.

Another important aspect of feature exploration is to determine if
transformations are required. We can see the age data is skewed and
non-negative, therefore, log-transforming it provides a better feature
to work with. We can see in Figure 12 that a log transformation
provides a more normal distribution than the non-transformed data



Fig. 8. Change in percentage of lighting conditions as collision severity
increases.

Fig. 9. Percentage of di�erent lighting conditions according to collision
severity type.

for both the at-fault driver age and the victim ages, suggesting this
transformation would be important to include going forward.

2 PREDICTIVE TASK
For our predictive task, we chose to predict collision severity. From
the data, this column could take on 5 di�erent variables - fatal, pain,
property damage only, severe injury, and other injury. We grouped
these into 3 larger categories: property damage only, injury, and fatal,
which reformed the problem into a 3-way classi�cation problem. A
list of features that we found useful from our exploratory analysis
as well as literature review can be found in �gure 11. Our main
performance metric uses balanced accuracy, as well as observing
the precision and recall. We also use a confusion matrix in order
to visualize the true and false positives for each class. The baseline
accuracy for our model should simply be 1/3 or 33% for randomly
selecting the collision severity.

We performed other additional preprocessing of our dataset. For
example, extraneous classes in some categorical variables which had
no meaning were removed. Rows which held a NaN (not a number)
values or mistaken entries were also removed. Additionally, some
classes encoded di�erent classes for e�ectively the same variable.

Fig. 10. Change in percentage of lighting conditions as collision severity
increases.

Fig. 11. Most common value for categorical features across di�erent collision
severity conditions.

For example, in the lighting class, "dark with no street lights" was
di�erent from "dark with street lights not functioning". These labels
were condensed to improve model accuracy. Finally, both the victim
age and the at fault age were both transformed logarithmically using
the following transformation G = ;>6(G + 0.01) in order to lessen
the distribution skew.



Fig. 12. (A) Distribution of at-fault driver age for all collision severity condi-
tions and (B) the log-transformed distribution. (C) Distribution of victim
ages and (B) the log-transformed distribution.

All categorical variables were encoded to one hot vectors, which
served as replacement features. The exception to this were categori-
cal variables which took on only 2 types, such as victim sex. These
variables were mapped to 0 and 1 instead.

We asses the validity of our predictions by comparing to the
baseline model, and comparing to hidden data from the dataset. Per-
formance metrics were analyzed with balanced accuracy as well as
observing the confusion matrix of the results, the overall precision,
and the recall of the model.

3 MODEL
We trained several di�erent models for our classi�cation task. Since
our goal is to predict a variable that can take on only 1 of 3 values,
we expect a baseline model that randomly guesses to have a 1/3 or
33% balanced accuracy.

The evaluation of our model will be based on standard classi�ca-
tion evaluation, including balanced accuracy, Precision, Recall, and
a confusion matrix.
We chose three di�erent models of classi�cation - Logistic Re-

gression, Decision Trees, and Naive Bayes. These were chosen as
they are generally strong classi�cation models while maintaining
simplicity. Because our dataset was large, it was important to select
models that were readily trainable and scalable. Logistic Regression
is trained using one vs Rest, which means that the model is able to
create separate classi�ers for each class. The decision tree was best
when �t with a depth of 10.

We created a balanced test set of about 330236 samples, of which
20% were reserved for the test set, and 20% for the validation set.
The test set was never touched until the �nal model was determined
by adjusting based on the accuracy of the validation set. Initially, we
chose a set of features from only the collisions and the parties, and
ignored any features from the victims. However, we then created

Model Type
Balanced
Accuracy

Avg
Precision

Avg
Recall

F1
Score

Logistic Regression
(No Victim Data) 59.6% 60% 60% 62%
Decision Tree

(No Victim Data) 55.3% 67% 55% 65%
Naive Bayes

(No Victim Data) 52.5% 52% 53% 47%
Logistic Regression
(With Victim Data) 66.25% 64% 66% 68%

Decision Tree
(With Victim Data) 61.2% 69% 61% 70%

Naive Bayes
(With Victim Data) 63.6% 61% 64% 63%

Table 1. Results for each model on the test dataset

a model that included the victim seat position, sex, and age. This
generated the best results for our prediction task for every classi�er.

Table 1 shows the results of the model on the test dataset for each
model that we created. Each model was evaluated with and without
having the victim data. These results were chosen after choosing the
best model performance on the validation set. Our test performance
is quite similar to the performance on the training and validation
data, which means that we adjusted our regularization constant and
decision tree depth such that we prevented too much over�tting.
We had no issues due to missing data, since we removed all rows
with a missing entry as part of the preprocessing.

4 LITERATURE
As previously mentioned, this was an existing dataset hosted on
Kaggle by Alex Gude. Gude did basic exploratory analysis including
mapping the collision locations and collisions over time, speci�cally
looking at which days of the week collisions occur and analyzing
the e�ect of daylight savings on car crashes [4]. Additional analysis
notebooks have been posted on Kaggle for this dataset by other
users. One of which aims to predict the number of killed victims
from the data using collision data, weather, road surface and road
condition as features and predicting using random forest, logistic
regression, gradient boosting, and multilayer perceptron [6]. Fea-
ture importance was not reported. Another analysis did statistical
analysis of motorcycle crashes speci�cally, looking for the impact of
day of the week, motorcycle type, weather, and road conditions on
motorcycle crashes [9]. Stewart continued by predicting whether a
motorcycle crash was fatal or not using a multitude of features and
trained a random forest classi�er to achieve 70% model accuracy [8].
The most important features were whether towing was required,
whether alcohol was involved, the party count, and lighting, all of
which we used as features in our model, and the models used in
both these works provide some inspiration for our model selection.
The Transportation Injury Mapping System was another tool de-
veloped at UC Berkeley to generate summary plots of fatalities and
injuries using the same Statewide Integrated Tra�c Records System
(SWITRS) dataset [7]. The data is also used to project estimated
number of fatalities and serious injuries in the future using linear
regression from previous years.



Similar datasets have also been used to answer the question of
collision severity using a variety of di�erent models with varying
degrees of success, including both statistical models and machine
learning models. Wu et al. us mixed logit models to analyze driver
injury severity in single-vehicle and multi-vehicle crashes on rural
two-lane highways in NewMexico from 2010 to 2011 and found dark
lighting and dusty weather conditions good predictors for injury
severity in multi-vehicle crashes and alcohol involved in both single-
and multi-vehicle crashes [11]. In another study, Chen et al used
Decision Table and Naive Bayes methods to predict driver injury
severity in rear-end crashes and found that poor tra�c environment,
poor lighting, poor roadway condition, increased vehicle damage,
and increased number of vehicles involved all increased the severity
of collisions [3].
Comparing statistical models with machine learning models, it

has been shown on similar datasets that machine learning models
perform better while also being generally easier to implement.. Li et
al. compared SVM and ordered probit (OP) models to predict injury
severity of individual crashes and found SVM performed better,
even for �ve injury-severity levels [5]. Additionally, they found that
two-level prediction resulted in a higher accuracy than �ve levels.
Ahmadi et al. also compared multinomial logit, mixed multinomial
logic, and SVM models to predict severity of rear-end crashes and
again found SVM outperformed the logit models [1].
The state-of-the-art models for predicting collision severity and

related tasks appear to be machine learning classi�cation models.
SVM outperforms statistical models, but other classi�cation models
have shown to display better performance even still. Wahab and
Jiang compared three di�erent machine learning motorcycle colli-
sion severity classi�cation models, random-forest models showed
the highest accuracy [10]. Features of particular importance for
severity prediction were location and time of crash, collision type,
road surface type, and shoulder condition. Another study compared
Bayesian Network, Arti�cial Neural Networks-Multi-Layer Percep-
tron (ANN-MLP), Arti�cial Neural Networks-Radial Basis Function
(ANN-RBF), Support Vector Machine (SVM)-Polynomial and Sup-
port Vector Machine (SVM)-Sigmoid models for predicting crash
severity and found ANN-RBF models to display the best perfor-
mance [2].
Overall, from literature it is clear that typical machine learning

classi�cation models are the state-of-the-art for the prediction of
collision severity, which is clear for the relatively high accuracy
achieved with our models. Additionally, the features used in our
model were highly motivated by those used in similar types of anal-
yses. This helped us narrow down the dataset from approximately
200 features to the 12 that we used. A main di�erence between
our work and that in literature is the diversity of data. The dataset
we used contains data from all types of vehicles and all types of
collisions. In order to achieve higher accuracy, it may be bene�cial
to narrow down the scope of the predictive task in future work to a
more speci�c type of crash, such as sideswipe or motorcycle.

5 RESULTS
Our best model in terms of accuracy was the logistic regression
multi class classi�er. The confusion matrix for this model can be
seen below.

Fig. 13. Confusion matrix for logistic regression classifier

Here, we observe that the model was very accurate in classifying
the injury and property damage only categories. This could be due to
the imbalance in the data, since there was about double the amount
of data for these two categories than the fatal category. One thing
that we observe is that our false negatives for predicting fatality
are fairly low. Thus, we rarely make a mistake when we predict
property damage only and the real answer is fatality. However, we
do make signi�cant mistakes in predicting injury when the true
value is fatality. The model needs to become more robust to these
False negatives so that if it is actually used when a citizen phones
into the police station, the police are noti�ed of the correct severity,
and take the appropriate action.

The most important features in the network were evaluated based
on the weights with the highest absolute values. The top 3 of these
were whether there was a hit and run misdemeanor, whether there
was a tow away, and whether it was a rear-end collision. This is
consistent with what we would expect, because these features would
indicate very well the severity of the crash. A tow away and a rear-
end collision might be signi�cant predictors of injury, and a hit-and-
run misdemeanor would very well predict that there was property
damage only. Overall, it is clear the importance of maintaining
detailed accounts of collisions in order to prepare for and avoid
future collisions as much as possible.

REFERENCES
[1] Alidad Ahmadi, Arash Jahangiri, Vincent Berardi, and Sahar Ghanipoor Machiani.

2017. Crash severity analysis of rear-end crashes in California using statistical
and machine learning classi�cation methods. Journal of Transportation Safety
Security 12, 4 (July 2017), 522–546. https://doi.org/10.1080/19439962.2018.1505793

[2] Amir Mohammadian Amiri, Navid Nadimi, and David Ragland. 2018. Predicting
Crash Severity Based on Its Related Collision Type Using Five Data Mining
Techniques. Transportation Research Board 97th Annual Meeting (Jan. 2018).



Fig. 16. Percentage of sobriety types according to collision severity type.

Fig. 17. Percentage of di�erent road conditions according to collision sever-
ity type.

Fig. 18. Percentage of di�erent hit and run conditions according to collision
severity type.

Fig. 19. Percentage of each victim sex according to collision severity type.

[3] Cong Chen, Guohui Zhang, Jinfu Yang, John C Milton, and Adélamar Dely Alcán-
tara. 2016. An explanatory analysis of driver injury severity in rear-end crashes
using a decision table/Naïve Bayes (DTNB) hybrid classi�er. Accident analysis
and prevention 90 (May 2016), 95–107. https://doi.org/10.1016/j.aap.2016.02.002

[4] Alexander Gude and California Highway Patrol. 2020. California Tra�c Collision
Data from SWITRS. Kaggle (2020). https://doi.org/10.34740/KAGGLE/DSV/
1671261

[5] Zhibin Li, Pan Liu, Wei Wang, and Chengcheng Xu. 2012. Using support vector
machinemodels for crash injury severity analysis. Accident analysis and prevention
45 (March 2012), 478–86. https://doi.org/10.1016/j.aap.2011.08.016

[6] Guillame S. 2020. Road victims prediction - WIP. Retrieved December 5, 2020 from
https://www.kaggle.com/guillaumes/road-victims-prediction-wip

[7] Safe Transportation Research Education Center (SafeTREC). 2020. Transportation
injury mapping system. Retrieved December 5, 2020 from https://tims.berkeley.
edu/help/Safety_PM.php

[8] S. Stewart. 2020. Predicting fatalities: 70% recall accuracy. Retrieved December
5, 2020 from https://www.kaggle.com/sstewart0/predicting-fatalities-70-recall-
accuracy

[9] S. Stewart. 2020. Statistic analysis. Retrieved December 5, 2020 from https:
//www.kaggle.com/sstewart0/statistical-analysis

[10] Lukuman Wahab and Haobin Jiang. 2019. Severity prediction of motorcycle
crashes with machine learning methods. International Journal of Crashworthiness
25, 5 (May 2019), 1–8. https://doi.org/10.1080/13588265.2019.1616885

[11] Qiong Wu, Feng Chen, Guohui Zhang, Xiaoyue Cathy Liu, Hua Wang, and Su-
san M. Bogus. 2014. Mixed logit model-based driver injury severity investigations
in single- and multi-vehicle crashes on rural two-lane highways. Accident analysis
and prevention 72 (Nov. 2014), 105–115. https://doi.org/10.1016/j.aap.2014.06.014

A APPENDIX
A.1 Feature Exploratory Analysis
Here we include pie charts for the remaining features used in pre-
diction that were not included in the body of the main text.

Fig. 14. Percentage of collisions occurring on state highways according to
collision severity type.

Fig. 15. Percentage of collisions di�erent party counts according to collision
severity type.


